Suppr超能文献

RiRPSSP:一种用于预测规则和不规则蛋白质二级结构的统一深度学习方法。

RiRPSSP: A unified deep learning method for prediction of regular and irregular protein secondary structures.

机构信息

Department of Computer Science, University of Kashmir, Srinagar 190006, Jammu and Kashmir, India.

出版信息

J Bioinform Comput Biol. 2023 Feb;21(1):2350001. doi: 10.1142/S0219720023500014. Epub 2023 Mar 9.

Abstract

Protein secondary structure prediction (PSSP) is an important and challenging task in protein bioinformatics. Protein secondary structures (SSs) are categorized in regular and irregular structure classes. Regular SSs, representing nearly 50% of amino acids consist of helices and sheets, whereas the remaining amino acids represent irregular SSs. [Formula: see text]-turns and [Formula: see text]-turns are the most abundant irregular SSs present in proteins. Existing methods are well developed for separate prediction of regular and irregular SSs. However, for more comprehensive PSSP, it is essential to develop a uniform model to predict all types of SSs simultaneously. In this work, using a novel dataset comprising dictionary of secondary structure of protein (DSSP)-based SSs and PROMOTIF-based [Formula: see text]-turns and [Formula: see text]-turns, we propose a unified deep learning model consisting of convolutional neural networks (CNNs) and long short-term memory networks (LSTMs) for simultaneous prediction of regular and irregular SSs. To the best of our knowledge, this is the first study in PSSP covering both regular and irregular structures. The protein sequences in our constructed datasets, RiR6069 and RiR513, have been borrowed from benchmark CB6133 and CB513 datasets, respectively. The results are indicative of increased PSSP accuracy.

摘要

蛋白质二级结构预测(PSSP)是蛋白质生物信息学中的一项重要而具有挑战性的任务。蛋白质二级结构(SS)分为规则结构和不规则结构两类。规则 SS 约占氨基酸的 50%,由螺旋和片层组成,而其余的氨基酸则代表不规则 SS。β-转角和π-转角是蛋白质中最丰富的不规则 SS。现有的方法已经很好地发展用于单独预测规则和不规则 SS。然而,对于更全面的 PSSP,开发一个统一的模型来同时预测所有类型的 SS 是至关重要的。在这项工作中,我们使用了一个新的数据集,该数据集包含基于字典的蛋白质二级结构(DSSP)的 SS 和基于 PROMOTIF 的β-转角和π-转角,提出了一个由卷积神经网络(CNNs)和长短时记忆网络(LSTMs)组成的统一深度学习模型,用于同时预测规则和不规则 SS。据我们所知,这是第一个涵盖规则和不规则结构的 PSSP 研究。我们构建的数据集 RiR6069 和 RiR513 中的蛋白质序列分别来自基准 CB6133 和 CB513 数据集。结果表明 PSSP 准确性有所提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验