Suppr超能文献

PiPred-一种用于预测蛋白质序列中π-螺旋的深度学习方法。

PiPred - a deep-learning method for prediction of π-helices in protein sequences.

机构信息

Laboratory of Structural Bioinformatics, Centre of New Technologies, University of Warsaw, Banacha 2c, 02-097, Warsaw, Poland.

Laboratory of Bioinformatics, Nencki Institute of Experimental Biology, Pasteura 3, 02-093, Warsaw, Poland.

出版信息

Sci Rep. 2019 May 3;9(1):6888. doi: 10.1038/s41598-019-43189-4.

Abstract

Canonical π-helices are short, relatively unstable secondary structure elements found in proteins. They comprise seven or more residues and are present in 15% of all known protein structures, often in functionally important regions such as ligand- and ion-binding sites. Given their similarity to α-helices, the prediction of π-helices is a challenging task and none of the currently available secondary structure prediction methods tackle it. Here, we present PiPred, a neural network-based tool for predicting π-helices in protein sequences. By performing a rigorous benchmark we show that PiPred can detect π-helices with a per-residue precision of 48% and sensitivity of 46%. Interestingly, some of the α-helices mispredicted by PiPred as π-helices exhibit a geometry characteristic of π-helices. Also, despite being trained only with canonical π-helices, PiPred can identify 6-residue-long α/π-bulges. These observations suggest an even higher effective precision of the method and demonstrate that π-helices, α/π-bulges, and other helical deformations may impose similar constraints on sequences. PiPred is freely accessible at: https://toolkit.tuebingen.mpg.de/#/tools/quick2d . A standalone version is available for download at: https://github.com/labstructbioinf/PiPred , where we also provide the CB6133, CB513, CASP10, and CASP11 datasets, commonly used for training and validation of secondary structure prediction methods, with correctly annotated π-helices.

摘要

规范的π-螺旋是在蛋白质中发现的短而相对不稳定的二级结构元件。它们由七个或更多残基组成,存在于所有已知蛋白质结构的 15%中,通常存在于功能重要的区域,如配体和离子结合位点。由于它们与α-螺旋相似,因此预测π-螺旋是一项具有挑战性的任务,目前没有可用的二级结构预测方法可以解决这个问题。在这里,我们介绍了 PiPred,这是一种基于神经网络的预测蛋白质序列中π-螺旋的工具。通过进行严格的基准测试,我们表明 PiPred 可以以 48%的残基精度和 46%的灵敏度检测到π-螺旋。有趣的是,一些被 PiPred 错误预测为π-螺旋的α-螺旋表现出π-螺旋的特征几何形状。此外,尽管仅使用规范的π-螺旋进行训练,PiPred 仍可以识别 6 个残基长的α/π-凸起。这些观察结果表明该方法的实际精度更高,并证明了π-螺旋、α/π-凸起和其他螺旋变形可能对序列施加类似的约束。PiPred 可在以下网址免费访问:https://toolkit.tuebingen.mpg.de/#/tools/quick2d。也可在以下网址下载独立版本:https://github.com/labstructbioinf/PiPred,在那里我们还提供了 CB6133、CB513、CASP10 和 CASP11 数据集,这些数据集通常用于训练和验证二级结构预测方法,并带有正确注释的π-螺旋。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c90c/6499831/df303a5b6ca9/41598_2019_43189_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验