Suppr超能文献

硫化锌胶体纳米晶体中铜空位色心产生的红色发射。

Red Emission from Copper-Vacancy Color Centers in Zinc Sulfide Colloidal Nanocrystals.

作者信息

Thompson Sarah M, Şahin Cüneyt, Yang Shengsong, Flatté Michael E, Murray Christopher B, Bassett Lee C, Kagan Cherie R

机构信息

Department of Electrical and Systems Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States.

UNAM - National Nanotechnology Research Center and Institute of Materials Science and Nanotechnology, Bilkent University, Ankara, TR 06800, Turkey.

出版信息

ACS Nano. 2023 Mar 28;17(6):5963-5973. doi: 10.1021/acsnano.3c00191. Epub 2023 Mar 9.

Abstract

Copper-doped zinc sulfide (ZnS:Cu) exhibits down-conversion luminescence in the UV, visible, and IR regions of the electromagnetic spectrum; the visible red, green, and blue emission is referred to as R-Cu, G-Cu, and B-Cu, respectively. The sub-bandgap emission arises from optical transitions between localized electronic states created by point defects, making ZnS:Cu a prolific phosphor material and an intriguing candidate material for quantum information science, where point defects excel as single-photon sources and spin qubits. Colloidal nanocrystals (NCs) of ZnS:Cu are particularly interesting as hosts for the creation, isolation, and measurement of quantum defects, since their size, composition, and surface chemistry can be precisely tailored for biosensing and optoelectronic applications. Here, we present a method for synthesizing colloidal ZnS:Cu NCs that emit primarily R-Cu, which has been proposed to arise from the Cu-V complex, an impurity-vacancy point defect structure analogous to well-known quantum defects in other materials that produce favorable optical and spin dynamics. First-principles calculations confirm the thermodynamic stability and electronic structure of Cu-V. Temperature- and time-dependent optical properties of ZnS:Cu NCs show blueshifting luminescence and an anomalous plateau in the intensity dependence as temperature is increased from 19 K to 290 K, for which we propose an empirical dynamical model based on thermally activated coupling between two manifolds of states inside the ZnS bandgap. Understanding of R-Cu emission dynamics, combined with a controlled synthesis method for obtaining R-Cu centers in colloidal NC hosts, will greatly facilitate the development of Cu-V and related complexes as quantum point defects in ZnS.

摘要

铜掺杂硫化锌(ZnS:Cu)在电磁光谱的紫外、可见和红外区域表现出下转换发光;可见的红、绿、蓝发射分别称为R-Cu、G-Cu和B-Cu。子带隙发射源于点缺陷产生的局域电子态之间的光学跃迁,使ZnS:Cu成为一种多产的磷光体材料,也是量子信息科学中一种引人关注的候选材料,在量子信息科学中,点缺陷作为单光子源和自旋量子比特表现出色。ZnS:Cu的胶体纳米晶体(NCs)作为量子缺陷的产生、隔离和测量的主体特别有趣,因为它们的尺寸、组成和表面化学可以针对生物传感和光电子应用进行精确调整。在这里,我们提出了一种合成主要发射R-Cu的胶体ZnS:Cu NCs的方法,R-Cu被认为源于Cu-V络合物,这是一种杂质-空位点缺陷结构,类似于其他材料中产生有利光学和自旋动力学的著名量子缺陷。第一性原理计算证实了Cu-V的热力学稳定性和电子结构。ZnS:Cu NCs的温度和时间相关光学性质表明,当温度从19 K升高到290 K时,发光发生蓝移,强度依赖性出现异常平台,为此我们提出了一个基于ZnS带隙内两个态流形之间热激活耦合的经验动力学模型。对R-Cu发射动力学的理解,结合在胶体NC主体中获得R-Cu中心的可控合成方法,将极大地促进Cu-V及相关络合物作为ZnS中的量子点缺陷的发展。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验