SAMRC Centre for Tuberculosis Research/DSI-NRF Centre of Excellence for Biomedical Tuberculosis Research Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Stellenbosch University, Cape Town, South Africa.
Department of Medical Microbiology, Faculty of Health Sciences, University of Pretoria, Prinshof, Gauteng, South Africa.
Antimicrob Agents Chemother. 2023 Apr 18;67(4):e0136822. doi: 10.1128/aac.01368-22. Epub 2023 Mar 9.
In Mycobacterium tuberculosis, bedaquiline and clofazimine resistance occurs primarily through variants, a gene encoding a repressor protein that regulates / efflux pump gene expression. Despite the shared effect of both drugs on efflux, little else is known about other pathways affected. We hypothesized that generation of bedaquiline- or clofazimine-resistant mutants could provide insight into additional mechanisms of action. We performed whole-genome sequencing and determined phenotypic MICs for both drugs on progenitor and mutant progenies. Mutants were induced through serial passage on increasing concentrations of bedaquiline or clofazimine. variants were identified in both clofazimine- and bedaquiline-resistant mutants, with concurrent SNPs occurring in the latter. Of concern was the acquisition of variants in the F420 biosynthesis pathway in clofazimine-resistant mutants obtained from either a fully susceptible (: del555GCT) or rifampicin mono-resistant (: 283delTG and T862C) progenitor. The acquisition of these variants possibly implicates a shared pathway between clofazimine and nitroimidazoles. Pathways associated with drug tolerance and persistence, F420 biosynthesis, glycerol uptake and metabolism, efflux, and NADH homeostasis appear to be affected following exposure to these drugs. Shared genes affected by both drugs include , , , and . Genes with variants in the bedaquiline resistant mutants included , , , , , and , while clofazimine-resistant mutants displayed , , , , , , and variants. These results show the importance of epistatic mechanisms as a means of responding to drug pressure and highlight the complexity of resistance acquisition in M. tuberculosis.
在结核分枝杆菌中,主要通过 变体对乙胺丁醇和氯法齐明产生耐药性,该基因编码一种调节 / 外排泵基因表达的抑制蛋白。尽管这两种药物对流出都有共同的作用,但对其他途径知之甚少。我们假设产生乙胺丁醇或氯法齐明耐药突变体可以深入了解其他作用机制。我们进行了全基因组测序,并确定了亲本和突变体后代对这两种药物的表型 MIC。通过在逐渐增加的乙胺丁醇或氯法齐明浓度上进行连续传代来诱导突变体。在氯法齐明和乙胺丁醇耐药突变体中均发现了 变体,后者同时发生了 SNPs。令人担忧的是,在从完全敏感的(: del555GCT)或利福平单耐药的(: 283delTG 和 T862C)亲本中获得的氯法齐明耐药突变体中获得了 F420 生物合成途径的变体。这些变体的获得可能暗示了氯法齐明和硝基咪唑之间存在共同途径。与药物耐受性和持久性、F420 生物合成、甘油摄取和代谢、外排以及 NADH 稳态相关的途径似乎在暴露于这些药物后受到影响。受这两种药物影响的共享基因包括 、 、 、 。在乙胺丁醇耐药突变体中发现了带有变体的基因 、 、 、 、 ,而氯法齐明耐药突变体显示出 、 、 、 、 、 变体。这些结果表明,上位性机制作为应对药物压力的一种手段非常重要,并强调了结核分枝杆菌获得耐药性的复杂性。