Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, C/ Marcel·lí Domingo s/n, 43007 Tarragona, Spain.
Laboratoire de Physique et Chimie des Nano Objets, LPCNO, UMR5215 INSA-UPS-CNRS, Université de Toulouse, Institut National des Sciences Appliquées, 135 Avenue de Rangueil, 31077 Toulouse, France.
Inorg Chem. 2023 Mar 20;62(11):4570-4580. doi: 10.1021/acs.inorgchem.2c04442. Epub 2023 Mar 9.
Ru and Rh nanoparticles catalyze the selective H/D exchange in phosphines using D as the deuterium source. The position of the deuterium incorporation is determined by the structure of the P-based substrates, while activity depends on the nature of the metal, the properties of the stabilizing agents, and the type of the substituent on phosphorus. The appropriate catalyst can thus be selected either for the exclusive H/D exchange in aromatic rings or also for alkyl substituents. The selectivity observed in each case provides relevant information on the coordination mode of the ligand. Density functional theory calculations provide insights into the H/D exchange mechanism and reveal a strong influence of the phosphine structure on the selectivity. The isotope exchange proceeds via C-H bond activation at nanoparticle edges. Phosphines with strong coordination through the phosphorus atom such as PPh or PPhMe show preferred deuteration at ortho positions of aromatic rings and at the methyl substituents. This selectivity is observed because the corresponding C-H moieties can interact with the nanoparticle surface while the phosphine is P-coordinated, and the C-H activation results in stable metallacyclic intermediates. For weakly coordinating phosphines such as P(-tolyl), the interaction with the nanoparticle can occur directly through phosphine substituents, and then, other deuteration patterns are observed.
钌和铑纳米粒子可以使用 D 作为氘源催化膦的选择性 H/D 交换。氘的掺入位置取决于基于 P 的底物的结构,而活性取决于金属的性质、稳定剂的性质以及磷上取代基的类型。因此,可以根据需要选择合适的催化剂,用于芳烃或烷基取代基的专属性 H/D 交换。在每种情况下观察到的选择性提供了有关配体配位模式的相关信息。密度泛函理论计算提供了对 H/D 交换机制的深入了解,并揭示了磷的结构对选择性的强烈影响。同位素交换通过纳米颗粒边缘的 C-H 键活化进行。通过磷原子进行强配位的膦,如 PPh 或 PPhMe,在芳环的邻位和甲基取代基上显示出优先的氘化。这种选择性是因为相应的 C-H 部分可以与纳米颗粒表面相互作用,而膦是 P 配位的,并且 C-H 活化导致稳定的金属环中间体。对于弱配位的膦,如 P(-tolyl),可以通过膦取代基直接与纳米颗粒相互作用,然后观察到其他氘化模式。