Lepron Marco, Daniel-Bertrand Marion, Mencia Gabriel, Chaudret Bruno, Feuillastre Sophie, Pieters Grégory
Département Médicaments et Technologies pour la Santé (DMTS), SCBM, Université Paris-Saclay, CEA, INRAE, Bat 547, 91191 Gif-sur-Yvette, France.
Institut National des Sciences Appliquées, LPCNO, Université de Toulouse, UMR 5215 INSA-CNRS-UPS, 135, Avenue de Rangueil, F-31077 Toulouse, France.
Acc Chem Res. 2021 Mar 16;54(6):1465-1480. doi: 10.1021/acs.accounts.0c00721. Epub 2021 Feb 23.
Recently, hydrogen isotope exchange (HIE) reactions have experienced impressive development due to the growing importance of isotope containing compounds in various fields including materials and life sciences, in addition to their classical use for mechanistic studies in chemistry and biology. Tritium-labeled compounds are also of crucial interest to study the fate of a bioactive substance or in radioligand binding assays. Over the past few years, deuterium-labeled drugs have been extensively studied for the improvement of ADME (absorption, distribution, metabolism, excretion) properties of existing bioactive molecules as a consequence of the primary kinetic isotope effect. Furthermore, in the emergent "omic" fields, the need for new stable isotopically labeled internal standards (SILS) for quantitative GC- or LC-MS analyses is increasing. Because of their numerous applications, the development of powerful synthetic methods to access deuterated and tritiated molecules with either high isotope incorporation and/or selectivities is of paramount importance.HIE reactions allow a late-stage incorporation of hydrogen isotopes in a single synthetic step, thus representing an advantageous alternative to conventional multistep synthesis approaches which are time- and resource-consuming. Moreover, HIE reactions can be considered as the most fundamental C-H functionalization processes and are therefore of great interest for the chemists' community. Depending on the purpose, HIE reactions must either be highly regioselective or allow a maximal incorporation of hydrogen isotopes, sometimes both. In this context, metal-catalyzed HIE reactions are generally performed using either homogeneous or heterogeneous catalysis which may have considerable drawbacks including an insufficient isotope incorporation and a lack of chemo- and/or regioselectivity, respectively.Over the past 6 years, we have shown that nanocatalysis can be considered as a powerful tool to access complex labeled molecules (e.g., pharmaceuticals, peptides and oligonucleotides) via regio- and chemoselective or even enantiospecific labeling processes occurring at the surface of metallic nanoclusters (Ru or Ir). Numerous heterocyclic (both saturated and unsaturated) and acyclic scaffolds have been labeled with an impressive functional group tolerance, and highly deuterated compounds or high molar activity tritiated drugs have been obtained. An insight into mechanisms has also been provided by theoretical calculations to explain the regioselectivities of the isotope incorporation. Our studies have suggested that undisclosed key intermediates, including 4- and 5-membered dimetallacycles, account for the particular regioselectivities observed during the process, in contrast to the 5- or 6-membered metallacycle key intermediates usually encountered in homogeneous catalysis. These findings together with the important number of available coordination sites explain the compelling reactivity of metal nanoparticles, in between homogeneous and heterogeneous catalysis. They represent innovative tools combining the advantages of both methods for the isotopic labeling and activation of C-H bonds of complex molecules.
近年来,由于含同位素化合物在包括材料科学和生命科学在内的各个领域的重要性日益增加,除了其在化学和生物学机理研究中的传统用途外,氢同位素交换(HIE)反应取得了令人瞩目的进展。氚标记的化合物对于研究生物活性物质的命运或放射性配体结合试验也至关重要。在过去几年中,由于一级动力学同位素效应,氘标记药物已被广泛研究,以改善现有生物活性分子的吸收、分布、代谢、排泄(ADME)特性。此外,在新兴的“组学”领域,对用于定量气相色谱或液相色谱 - 质谱分析的新型稳定同位素标记内标(SILS)的需求也在增加。由于其众多应用,开发能够以高同位素掺入率和/或选择性获得氘代和氚代分子的强大合成方法至关重要。HIE反应允许在单个合成步骤中晚期掺入氢同位素,因此是传统多步合成方法的有利替代方案,传统方法既耗时又耗资源。此外,HIE反应可被视为最基本的C - H官能化过程,因此受到化学界的极大关注。根据目的不同,HIE反应必须要么具有高度区域选择性,要么允许最大程度地掺入氢同位素,有时两者都需要。在这种情况下,金属催化的HIE反应通常使用均相或非均相催化进行,这可能有相当大的缺点,分别包括同位素掺入不足和缺乏化学及/或区域选择性。在过去6年中,我们已经表明,纳米催化可被视为一种强大的工具,通过在金属纳米团簇(Ru或Ir)表面发生的区域和化学选择性甚至对映体特异性标记过程来获得复杂的标记分子(例如药物、肽和寡核苷酸)。许多杂环(饱和和不饱和)和无环支架已被标记,具有令人印象深刻的官能团耐受性,并获得了高度氘代的化合物或高摩尔活性的氚代药物。理论计算也提供了对机理的深入了解,以解释同位素掺入的区域选择性。我们的研究表明,未公开的关键中间体,包括4元和5元双金属环,是该过程中观察到的特殊区域选择性的原因,这与均相催化中通常遇到的5元或6元金属环关键中间体形成对比。这些发现以及大量可用的配位位点解释了金属纳米颗粒在均相和非均相催化之间引人注目的反应性。它们代表了结合两种方法优点的创新工具,用于复杂分子的C - H键的同位素标记和活化。