Suppr超能文献

通过简单绿色的方法制备用于高效吸附和去除美罗培南的多孔磁性分子印迹聚合物的策略性准备。

Strategic preparation of porous magnetic molecularly imprinted polymers via a simple and green method for high-performance adsorption and removal of meropenem.

作者信息

Ma Xuan, Wang Yue, Wang Wenting, Heinlein Jake, Pfefferle Lisa D, Tian Xuemeng

机构信息

The First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi, 710021, China.

School of Chemistry, Xi'an Jiaotong University, Xi'an, Shaanxi, 710049, China.

出版信息

Talanta. 2023 Jun 1;258:124419. doi: 10.1016/j.talanta.2023.124419. Epub 2023 Mar 7.

Abstract

In this study, a facile method has been developed to synthesize a novel type of porous magnetic molecularly imprinted polymers (FeO-MER-MMIPs) for the selective adsorption and removal of meropenem. The FeO-MER-MMIPs, with abundant functional groups and sufficient magnetism for easy separation, are prepared in aqueous solutions. The porous carriers reduce the overall mass of the MMIPs, greatly improving their adsorption capacity per unit mass and optimizing the overall value of the adsorbents. The green preparation conditions, adsorption performance, and physical and chemical properties of FeO-MER-MMIPs have been carefully studied. The developed submicron materials exhibit a homogeneous morphology, satisfactory superparamagnetism (60 emu g), large adsorption capacity (11.49 mg g), quick adsorption kinetics (40 min), and good practical implementation in human serum and environmental water. Finally, the protocol developed in this work delivers a green and feasible method for synthesizing highly efficient adsorbents for the specific adsorption and removal of other antibiotics as well.

摘要

在本研究中,已开发出一种简便方法来合成新型多孔磁性分子印迹聚合物(FeO-MER-MMIPs),用于选择性吸附和去除美罗培南。FeO-MER-MMIPs在水溶液中制备,具有丰富的官能团和足够的磁性以便于分离。多孔载体降低了MMIPs的整体质量,极大地提高了其单位质量的吸附容量,并优化了吸附剂的整体价值。已对FeO-MER-MMIPs的绿色制备条件、吸附性能以及物理和化学性质进行了仔细研究。所开发的亚微米材料呈现出均匀的形态、令人满意的超顺磁性(60 emu g)、较大的吸附容量(11.49 mg g)、快速的吸附动力学(40分钟),并且在人血清和环境水中具有良好的实际应用效果。最后,本工作中开发的方案为合成用于特异性吸附和去除其他抗生素的高效吸附剂提供了一种绿色且可行的方法。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验