School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China.
School of Pharmaceutical Sciences, Chongqing University, Chongqing 401331, China.
Int J Biol Macromol. 2022 Sep 1;216:374-387. doi: 10.1016/j.ijbiomac.2022.06.187. Epub 2022 Jul 5.
Magnetic porous cellulose molecularly imprinted polymers-based bisphenols have been developed using FeO as the magnetic material, a deep eutectic solvent as the assisted solvent, and N-isopropylacrylamide as the functional monomer. The resulting magnetic porous cellulose molecularly imprinted polymers were characterized using scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, vibrating sample magnetometry, thermal gravimetric analysis, and Brunauer-Emmett-Teller analysis. Moreover, the adsorption properties of the magnetic porous cellulose molecularly imprinted polymers toward bisphenol A, bisphenol F, and bisphenol AF were investigated using static, dynamic, and selective adsorption experiments. The introduction of porous cellulose materials significantly improves the capabilities of the material. The adsorption capacity, mass transfer efficiency, and selectivity of the magnetic porous cellulose molecularly imprinted polymers toward bisphenol A were 5.9, 4.0, and 4.4 times those of traditional molecularly imprinted polymers. Moreover, the adsorption stability of the magnetic porous cellulose molecularly imprinted polymers was investigated under different temperature and pH conditions. The adsorption characteristics of the magnetic porous cellulose molecularly imprinted polymers toward the target molecules were investigated using adsorption isotherm, kinetic, and thermodynamic models. Hydrogen bonding is the main interaction formed between the magnetic porous cellulose molecularly imprinted polymers and the target molecules. Magnetic porous cellulose molecularly imprinted polymers have great application value with excellent stability and reusability. Finally, the combination of the magnetic porous cellulose molecularly imprinted polymers and high-performance liquid chromatography or ultra-performance liquid chromatography-mass spectrometry was successfully used for the purification and detection of bisphenols in milk (1.349 ng/mL bisphenol F and 3.014 ng/mL bisphenol AF), canned fruits (1129 ng/mL bisphenol A, 10.11 ng/mL bisphenol F, and 91.87 ng/mL bisphenol AF), and fish (11.91 ng/mL bisphenol AF) samples. Furthermore, the magnetic porous cellulose molecularly imprinted polymer method is more selective, sensitive, and accurate than the traditional precipitation method.
基于磁性多孔纤维素分子印迹聚合物的双酚类化合物已被开发出来,所用的磁性材料为 FeO,辅助溶剂为深共晶溶剂,功能单体为 N-异丙基丙烯酰胺。通过扫描电子显微镜、傅里叶变换红外光谱、X 射线衍射、振动样品磁强计、热重分析和 Brunauer-Emmett-Teller 分析对所得磁性多孔纤维素分子印迹聚合物进行了表征。此外,还通过静态、动态和选择性吸附实验研究了磁性多孔纤维素分子印迹聚合物对双酚 A、双酚 F 和双酚 AF 的吸附性能。多孔纤维素材料的引入显著提高了材料的性能。磁性多孔纤维素分子印迹聚合物对双酚 A 的吸附容量、传质效率和选择性分别是传统分子印迹聚合物的 5.9、4.0 和 4.4 倍。此外,还研究了不同温度和 pH 条件下磁性多孔纤维素分子印迹聚合物的吸附稳定性。通过吸附等温线、动力学和热力学模型研究了磁性多孔纤维素分子印迹聚合物对目标分子的吸附特性。氢键是磁性多孔纤维素分子印迹聚合物与目标分子之间形成的主要相互作用。磁性多孔纤维素分子印迹聚合物具有良好的稳定性和可重复使用性,具有很大的应用价值。最后,成功地将磁性多孔纤维素分子印迹聚合物与高效液相色谱或超高效液相色谱-质谱联用,用于牛奶(1.349ng/mL 双酚 F 和 3.014ng/mL 双酚 AF)、罐装水果(1129ng/mL 双酚 A、10.11ng/mL 双酚 F 和 91.87ng/mL 双酚 AF)和鱼类(11.91ng/mL 双酚 AF)样品中双酚类化合物的净化和检测。此外,与传统沉淀法相比,磁性多孔纤维素分子印迹聚合物法具有更高的选择性、灵敏度和准确性。