Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, NM 87545, USA; Center for Nonlinear Studies, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.
National Cancer Institute RAS Initiative, Cancer Research Technology Program, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21702, USA.
Comput Biol Chem. 2023 Jun;104:107835. doi: 10.1016/j.compbiolchem.2023.107835. Epub 2023 Mar 1.
Functional interaction of Ras signaling proteins with upstream, negative regulatory GTPase activating proteins (GAPs) represents a crucial step in cellular decision making related to growth and survival. Key components of the catalytic transition state for Ras deactivation by GAP-accelerated hydrolysis of Ras-bound guanosine triphosphate (GTP) are thought to include an arginine residue from the GAP (the arginine finger), a glutamine residue from Ras (Q61), and a water molecule that is likely coordinated by Q61 to engage in nucleophilic attack on GTP. Here, we use in-vitro fluorescence experiments to show that 0.1-100 mM concentrations of free arginine, imidazole, and other small nitrogenous molecule fail to accelerate GTP hydrolysis, even in the presence of the catalytic domain of a mutant GAP lacking its arginine finger (R1276A NF1). This result is surprising given that imidazole can chemically rescue enzyme activity in arginine-to-alanine mutant protein tyrosine kinases (PTKs) that share many active site components with Ras/GAP complexes. Complementary all-atom molecular dynamics (MD) simulations reveal that an arginine finger GAP mutant still functions to enhance Ras Q61-GTP interaction, though less extensively than wild-type GAP. This increased Q61-GTP proximity may promote more frequent fluctuations into configurations that enable GTP hydrolysis as a component of the mechanism by which GAPs accelerate Ras deactivation in the face of arginine finger mutations. The failure of small molecule analogs of arginine to chemically rescue catalytic deactivation of Ras is consistent with the idea that the influence of the GAP goes beyond the simple provision of its arginine finger. However, the failure of chemical rescue in the presence of R1276A NF1 suggests that the GAPs arginine finger is either unsusceptible to rescue due to exquisite positioning or that it is involved in complex multivalent interactions. Therefore, in the context of oncogenic Ras proteins with mutations at codons 12 or 13 that inhibit arginine finger penetration toward GTP, drug-based chemical rescue of GTP hydrolysis may have bifunctional chemical/geometric requirements that are more difficult to satisfy than those that result from arginine-to-alanine mutations in other enzymes for which chemical rescue has been demonstrated.
Ras 信号蛋白与上游负调控 GTP 酶激活蛋白(GAP)的功能相互作用是细胞生长和存活相关决策的关键步骤。GAP 加速 Ras 结合的鸟苷三磷酸(GTP)水解使 Ras 失活的催化过渡态的关键组成部分被认为包括 GAP 中的一个精氨酸残基(精氨酸指)、Ras 中的一个谷氨酰胺残基(Q61)和一个水分子,该水分子可能由 Q61 协调以参与对 GTP 的亲核攻击。在这里,我们使用体外荧光实验表明,0.1-100mM 的游离精氨酸、咪唑和其他小氮分子浓度未能加速 GTP 水解,即使在缺乏其精氨酸指(R1276A NF1)的突变 GAP 催化结构域的存在下也是如此。鉴于咪唑可以在与 Ras/GAP 复合物具有许多活性位点成分的精氨酸到丙氨酸突变蛋白酪氨酸激酶(PTK)中化学拯救酶活性,这一结果令人惊讶。互补的全原子分子动力学(MD)模拟表明,精氨酸指 GAP 突变体仍能增强 Ras Q61-GTP 相互作用,尽管不如野生型 GAP 广泛。这种增加的 Q61-GTP 接近度可能会促进更频繁地波动到能够水解 GTP 的构象,这是 GAP 在面对精氨酸指突变时加速 Ras 失活的机制的一部分。小分子精氨酸类似物在化学上未能拯救 Ras 催化失活与这样一种观点一致,即 GAP 的影响超出了简单提供其精氨酸指的范围。然而,在存在 R1276A NF1 的情况下化学拯救的失败表明,GAP 的精氨酸指要么由于精确定位而不易受到拯救,要么它参与了复杂的多价相互作用。因此,在具有抑制精氨酸指向 GTP 穿透的密码子 12 或 13 突变的致癌 Ras 蛋白的背景下,基于药物的 GTP 水解化学拯救可能具有比通过化学拯救已证明的其他酶中的精氨酸到丙氨酸突变更难满足的双功能化学/几何要求。