Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
Science and Engineering, China University of Geosciences (Beijing), 29 Xueyuan Road, Haidian District, Beijing 100083, China.
J Hazard Mater. 2023 Jun 5;451:131153. doi: 10.1016/j.jhazmat.2023.131153. Epub 2023 Mar 6.
There are few studies on concurrent bacterial and fungal community assembly processes that govern the metal(loid)s biogeochemical cycles at smelters. Here, a systematic investigation combined geochemical characterization, co-occurrence patterns, and assembly mechanisms of bacterial and fungal communities inhabiting soils around an abandoned arsenic smelter. Acidobacteriota, Actinobacteriota, Chloroflexi, and Pseudomonadota were dominant in bacterial communities, whereas Ascomycota and Basidiomycota dominated fungal communities. The random forest model indicated the bioavailable fractions of Fe (9.58%) were the main positive factor driving the beta diversity of bacterial communities, and the total N (8.09%) was the main negative factor for fungal communities. Microbe-contaminant interactions demonstrate the positive impact of the bioavailable fractions of certain metal(loid)s on bacteria (Comamonadaceae and Rhodocyclaceae) and fungi (Meruliaceae and Pleosporaceae). The fungal co-occurrence networks exhibited more connectivity and complexity than the bacterial networks. The keystone taxa were identified in bacterial (including Diplorickettsiaceae, norank_o_Candidatus_Woesebacteria, norank_o_norank_c_AT-s3-28, norank_o_norank_c_bacteriap25, and Phycisphaeraceae) and fungal (including Biatriosporaceae, Ganodermataceae, Peniophoraceae, Phaeosphaeriaceae, Polyporaceae, Teichosporaceae, Trichomeriaceae, Wrightoporiaceae, and Xylariaceae) communities. Meanwhile, community assembly analysis revealed that deterministic processes dominated the microbial community assemblies, which were highly impacted by pH, total N, and total and bioavailable metal(loid) content. This study provides helpful information to develop bioremediation strategies for the mitigation of metal(loid)s-polluted soils.
关于控制冶炼厂金属(类)地球化学循环的细菌和真菌群落组装过程的研究很少。在这里,我们结合地球化学特征、共存模式和栖息在废弃砷冶炼厂周围土壤中的细菌和真菌群落的组装机制进行了系统研究。在细菌群落中,优势菌群为 Acidobacteriota、Actinobacteriota、Chloroflexi 和 Pseudomonadota,而真菌群落中则以 Ascomycota 和 Basidiomycota 为主。随机森林模型表明,Fe 的可利用分数(9.58%)是驱动细菌群落β多样性的主要正因素,而总 N(8.09%)是真菌群落的主要负因素。微生物-污染物相互作用表明,某些金属(类)的可利用分数对细菌(Comamonadaceae 和 Rhodocyclaceae)和真菌(Meruliaceae 和 Pleosporaceae)具有积极影响。真菌的共生网络比细菌网络具有更高的连接性和复杂性。关键分类群存在于细菌(包括 Diplorickettsiaceae、未命名的 o_Candidatus_Woesebacteria、未命名的 o_norank_c_AT-s3-28、未命名的 o_norank_c_bacteriap25 和 Phycisphaeraceae)和真菌(包括 Biatriosporaceae、Ganodermataceae、Peniophoraceae、Phaeosphaeriaceae、Polyporaceae、Teichosporaceae、Trichomeriaceae、Wrightoporiaceae 和 Xylariaceae)群落中。同时,群落组装分析表明,确定性过程主导了微生物群落的组装,而 pH、总 N、总金属(类)含量和可利用金属(类)含量对其有高度影响。本研究为开发受金属(类)污染土壤的生物修复策略提供了有益信息。