Suppr超能文献

亚硒酸钠污染土壤中PM1的生物修复潜力及其对微生物群落组装的影响

Bioremediation Potential of PM1 in Sodium Selenite-Contaminated Soil and Its Impact on Microbial Community Assembly.

作者信息

Peng Mu, Deng Guangai, Hu Chongyang, Hou Xue, Wang Zhiyong

机构信息

Hubei Key Laboratory of Biological Resources Protection and Utilization, Hubei Minzu University, Enshi 445000, China.

College of Biological and Food Engineering, Hubei Minzu University, Enshi 445000, China.

出版信息

Microorganisms. 2024 Nov 29;12(12):2458. doi: 10.3390/microorganisms12122458.

Abstract

Soil microbial communities are particularly sensitive to selenium contamination, which has seriously affected the stability of soil ecological environment and function. In this study, we applied high-throughput 16S rRNA gene sequencing to examine the effects of low and high doses of sodium selenite and the selenite-degrading bacterium, PM1, on soil bacterial community composition, diversity, and assembly processes under controlled laboratory conditions. Our results indicated that sodium selenite and strain PM1 were key predictors of bacterial community structure in selenium-contaminated soils. Exposure to sodium selenite initially led to reductions in microbial diversity and a shift in dominant bacterial groups, particularly an increase in and a decrease in . Sodium selenite significantly reduced microbial diversity and simplified co-occurrence networks, whereas inoculation with strain PM1 partially reversed these effects by enhancing community complexity. Ecological modeling, including the normalized stochasticity ratio (NST) and Sloan's neutral community model (NCM), suggested that stochastic processes predominated in the assembly of bacterial communities under selenium stress. Null model analysis further revealed that heterogeneous selection and drift were primary drivers of community turnover, with PM1 inoculation promoting species dispersal and buffering against the negative impacts of selenium. These findings shed light on microbial community assembly mechanisms under selenium contamination and highlight the potential of strain PM1 for the bioremediation of selenium-affected soils.

摘要

土壤微生物群落对硒污染特别敏感,这已严重影响了土壤生态环境和功能的稳定性。在本研究中,我们应用高通量16S rRNA基因测序技术,在可控的实验室条件下,研究低剂量和高剂量亚硒酸钠以及亚硒酸盐降解菌PM1对土壤细菌群落组成、多样性和组装过程的影响。我们的结果表明,亚硒酸钠和菌株PM1是硒污染土壤中细菌群落结构的关键预测因子。暴露于亚硒酸钠最初会导致微生物多样性降低和优势细菌群体的转变,特别是[此处原文缺失具体细菌名称]的增加和[此处原文缺失具体细菌名称]的减少。亚硒酸钠显著降低了微生物多样性并简化了共现网络,而接种菌株PM1通过增强群落复杂性部分逆转了这些影响。生态建模,包括标准化随机性比率(NST)和斯隆中性群落模型(NCM),表明在硒胁迫下细菌群落组装过程中随机过程占主导地位。零模型分析进一步揭示,异质性选择和漂变是群落更替的主要驱动因素,接种PM1促进了物种扩散并缓冲了硒的负面影响。这些发现揭示了硒污染下微生物群落组装机制,并突出了菌株PM1对受硒影响土壤进行生物修复的潜力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7629/11677749/4865942d5c61/microorganisms-12-02458-g001.jpg

相似文献

1
2
Microbial diversity and community assembly in heavy metal-contaminated soils: insights from selenium-impacted mining areas.
Front Microbiol. 2025 Apr 14;16:1561678. doi: 10.3389/fmicb.2025.1561678. eCollection 2025.
4
Different responses of bacteria and fungi to environmental variables and corresponding community assembly in Sb-contaminated soil.
Environ Pollut. 2022 Apr 1;298:118812. doi: 10.1016/j.envpol.2022.118812. Epub 2022 Jan 11.
5
Viral and Bacterial Communities Collaborate through Complementary Assembly Processes in Soil to Survive Organochlorine Contamination.
Appl Environ Microbiol. 2023 Mar 29;89(3):e0181022. doi: 10.1128/aem.01810-22. Epub 2023 Feb 21.
6
Selenite resistant rhizobacteria stimulate SeO(3) (2-) phytoextraction by Brassica juncea in bioaugmented water-filtering artificial beds.
Environ Sci Pollut Res Int. 2009 Sep;16(6):663-70. doi: 10.1007/s11356-008-0088-y. Epub 2008 Dec 23.
8
Parent material influences soil properties to shape bacterial community assembly processes, diversity, and enzyme-related functions.
Sci Total Environ. 2024 Jun 1;927:172064. doi: 10.1016/j.scitotenv.2024.172064. Epub 2024 Apr 1.
9
The assembly process and co-occurrence patterns of soil microbial communities at a lead smelting site.
Sci Total Environ. 2023 Oct 10;894:164932. doi: 10.1016/j.scitotenv.2023.164932. Epub 2023 Jun 20.
10
Persistent Bacterial and Fungal Community Shifts Exhibited in Selenium-Contaminated Reclaimed Mine Soils.
Appl Environ Microbiol. 2018 Aug 1;84(16). doi: 10.1128/AEM.01394-18. Print 2018 Aug 15.

引用本文的文献

1
Microbial diversity and community assembly in heavy metal-contaminated soils: insights from selenium-impacted mining areas.
Front Microbiol. 2025 Apr 14;16:1561678. doi: 10.3389/fmicb.2025.1561678. eCollection 2025.

本文引用的文献

1
Nitrogen-Fixing Gamma Proteobacteria -A Blueprint for Nitrogen-Fixing Plants?
Microorganisms. 2024 Oct 18;12(10):2087. doi: 10.3390/microorganisms12102087.
2
Unveiling the vital role of soil microorganisms in selenium cycling: a review.
Front Microbiol. 2024 Sep 11;15:1448539. doi: 10.3389/fmicb.2024.1448539. eCollection 2024.
3
Widespread distribution of the DyP-carrying bacteria involved in the aflatoxin B1 biotransformation in Proteobacteria and Actinobacteria.
J Hazard Mater. 2024 Oct 5;478:135493. doi: 10.1016/j.jhazmat.2024.135493. Epub 2024 Aug 10.
4
Polymetallic contamination drives indigenous microbial community assembly dominated by stochastic processes at Pb-Zn smelting sites.
Sci Total Environ. 2024 Oct 15;947:174575. doi: 10.1016/j.scitotenv.2024.174575. Epub 2024 Jul 6.
6
Oxidative stress-induced DNA damage and DNA repair mechanisms in mangrove bacteria exposed to climatic and heavy metal stressors.
Environ Pollut. 2023 Dec 15;339:122722. doi: 10.1016/j.envpol.2023.122722. Epub 2023 Oct 18.
7
Microbial interactions strengthen deterministic processes during community assembly in a subtropical estuary.
Sci Total Environ. 2024 Jan 1;906:167499. doi: 10.1016/j.scitotenv.2023.167499. Epub 2023 Sep 30.
9
Biochar amendment reduces biological nitrogen fixation and nitrogen use efficiency in cadmium-contaminated paddy fields.
J Environ Manage. 2023 Oct 15;344:118338. doi: 10.1016/j.jenvman.2023.118338. Epub 2023 Jun 27.
10
Selenite bioreduction by a consortium of halophilic/halotolerant bacteria and/or yeasts in saline media.
Environ Pollut. 2023 Aug 15;331(Pt 2):121948. doi: 10.1016/j.envpol.2023.121948. Epub 2023 Jun 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验