Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN; Department of Artificial Intelligence and Informatics, Mayo Clinic, Rochester, MN.
Robert D. and Patricia E. Kern Center for the Science of Health Care Delivery, Mayo Clinic, Rochester, MN; Division of Health Care Delivery Research, Mayo Clinic, Rochester, MN.
Am Heart J. 2023 Jun;260:124-140. doi: 10.1016/j.ahj.2023.02.015. Epub 2023 Mar 7.
Lifelong oral anticoagulation is recommended in patients with atrial fibrillation (AF) to prevent stroke. Over the last decade, multiple new oral anticoagulants (OACs) have expanded the number of treatment options for these patients. While population-level effectiveness of OACs has been compared, it is unclear if there is variability in benefit and risk across patient subgroups.
We analyzed claims and medical data for 34,569 patients who initiated a nonvitamin K antagonist oral anticoagulant (non-vitamin K antagonist oral anticoagulant (NOAC); apixaban, dabigatran, and rivaroxaban) or warfarin for nonvalvular AF between 08/01/2010 and 11/29/2017 from the OptumLabs Data Warehouse. A machine learning (ML) method was applied to match different OAC groups on several baseline variables including, age, sex, race, renal function, and CHADS -VASC score. A causal ML method was then used to discover patient subgroups characterizing the head-to-head treatment effects of the OACs on a primary composite outcome of ischemic stroke, intracranial hemorrhage, and all-cause mortality.
The mean age, number of females and white race in the entire cohort of 34,569 patients were 71.2 (SD, 10.7) years, 14,916 (43.1%), and 25,051 (72.5%) respectively. During a mean follow-up of 8.3 (SD, 9.0) months, 2,110 (6.1%) of patients experienced the composite outcome, of whom 1,675 (4.8%) died. The causal ML method identified 5 subgroups with variables favoring apixaban over dabigatran; 2 subgroups favoring apixaban over rivaroxaban; 1 subgroup favoring dabigatran over rivaroxaban; and 1 subgroup favoring rivaroxaban over dabigatran in terms of risk reduction of the primary endpoint. No subgroup favored warfarin and most dabigatran vs warfarin users favored neither drug. The variables that most influenced favoring one subgroup over another included Age, history of ischemic stroke, thromboembolism, estimated glomerular filtration rate, Race, and myocardial infarction.
Among patients with AF treated with a NOAC or warfarin, a causal ML method identified patient subgroups with differences in outcomes associated with OAC use. The findings suggest that the effects of OACs are heterogeneous across subgroups of AF patients, which could help personalize the choice of OAC. Future prospective studies are needed to better understand the clinical impact of the subgroups with respect to OAC selection.
在心房颤动(AF)患者中推荐终身口服抗凝剂以预防中风。在过去的十年中,多种新型口服抗凝剂(OAC)为这些患者的治疗选择提供了更多选择。尽管已经比较了 OAC 的人群有效性,但尚不清楚在亚组患者中是否存在获益和风险的差异。
我们分析了 2010 年 8 月 1 日至 2017 年 11 月 29 日期间从 OptumLabs 数据仓库中开始使用非维生素 K 拮抗剂口服抗凝剂(非维生素 K 拮抗剂口服抗凝剂(NOAC);阿哌沙班,达比加群和利伐沙班)或华法林治疗非瓣膜性 AF 的 34569 名患者的索赔和医疗数据。应用机器学习(ML)方法根据年龄,性别,种族,肾功能和 CHADS-VASC 评分等多个基线变量对不同的 OAC 组进行匹配。然后,使用因果 ML 方法发现描述 OAC 在缺血性中风,颅内出血和全因死亡率的主要复合结局方面的头对头治疗效果的患者亚组。
在 34569 名患者的整个队列中,平均年龄,女性人数和白人种族分别为 71.2(SD,10.7)岁,14916(43.1%)和 25051(72.5%)。在平均 8.3(SD,9.0)个月的随访期间,2110 名(6.1%)患者发生了复合结局,其中 1675 名(4.8%)死亡。因果 ML 方法确定了 5 个亚组,这些亚组中阿哌沙班优于达比加群;2 个亚组阿哌沙班优于利伐沙班;1 个亚组达比加群优于利伐沙班;1 个亚组利伐沙班优于达比加群在主要终点风险降低方面。没有亚组支持华法林,大多数达比加群与华法林使用者都不支持任何药物。最能影响偏向一个亚组而不是另一个亚组的变量包括年龄,缺血性中风史,血栓栓塞,估计肾小球滤过率,种族和心肌梗塞。
在接受 NOAC 或华法林治疗的 AF 患者中,因果 ML 方法确定了在 OAC 使用方面存在结局差异的患者亚组。这些发现表明,OAC 在 AF 患者亚组中的作用是异质的,这可以帮助实现 OAC 的个体化选择。需要进一步的前瞻性研究来更好地了解亚组在 OAC 选择方面的临床影响。