Suppr超能文献

在临床前模型中进行活体血氧饱和度的血管中心映射。

Vascular-centric mapping of in vivo blood oxygen saturation in preclinical models.

机构信息

Depts. of Biomedical Engineering, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Russell H. Morgan Department of Radiology and Radiological Sciences, the Johns Hopkins University School of Medicine, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, the Johns Hopkins University School of Medicine, Baltimore, MD, USA.

出版信息

Microvasc Res. 2023 Jul;148:104518. doi: 10.1016/j.mvr.2023.104518. Epub 2023 Mar 8.

Abstract

Assessing intravascular blood oxygen saturation (SO) is crucial for characterizing in vivo microenvironmental changes in preclinical models of injury and disease. However, most conventional optical imaging techniques for mapping in vivo SO assume or compute a single value of the optical path-length in tissue. This is especially detrimental when mapping in vivo SO in experimental disease or wound healing models that are characterized by vascular and tissue remodeling. Therefore, to circumvent this limitation we developed an in vivo SO mapping technique that utilizes hemoglobin-based intrinsic optical signal (IOS) imaging combined with a vascular-centric estimation of optical path-lengths. In vivo arterial and venous SO distributions derived with this approach closely matched those reported in the literature, while those derived using the single path-length (i.e. conventional) approach did not. Moreover, in vivo cerebrovascular SO strongly correlated (R > 0.7) with changes in systemic SO measured with a pulse oximeter during hypoxia and hyperoxia paradigms. Finally, in a calvarial bone healing model, in vivo SO assessed over four weeks was spatiotemporally correlated with angiogenesis and osteogenesis (R > 0.6). During the early stages of bone healing (i.e. day 10), angiogenic vessels surrounding the calvarial defect exhibited mean SO that was elevated by10 % (p < 0.05) relative to that observed at a later stage (i.e., day 26), indicative of their role in osteogenesis. These correlations were not evident with the conventional SO mapping approach. The feasibility of our wide field-of-view in vivo SO mapping approach illustrates its potential for characterizing the microvascular environment in applications ranging from tissue engineering to cancer.

摘要

评估血管内血氧饱和度 (SO) 对于描述损伤和疾病的临床前模型中的体内微环境变化至关重要。然而,用于绘制体内 SO 的大多数传统光学成像技术都假设或计算组织中的单一光程值。当在以血管和组织重塑为特征的实验性疾病或伤口愈合模型中绘制体内 SO 时,这尤其不利。因此,为了规避这一限制,我们开发了一种利用基于血红蛋白的固有光学信号 (IOS) 成像与血管中心的光程估计相结合的体内 SO 映射技术。通过这种方法得出的动脉和静脉血氧饱和度分布与文献中报道的分布非常吻合,而使用单一光程(即传统)方法得出的分布则不然。此外,在缺氧和高氧范式期间,通过脉搏血氧仪测量的系统 SO 变化与体内脑血管 SO 强烈相关 (R > 0.7)。最后,在颅骨骨愈合模型中,在 4 周的时间内评估体内 SO 与血管生成和成骨(R > 0.6)呈时空相关。在骨愈合的早期阶段(即第 10 天),颅骨缺损周围的血管生成血管的平均 SO 升高了 10%(p < 0.05),与在较晚阶段(即第 26 天)观察到的 SO 相比,这表明它们在成骨中的作用。这些相关性在传统的 SO 映射方法中并不明显。我们的宽视场体内 SO 映射方法的可行性表明了其在从组织工程到癌症等应用中表征微血管环境的潜力。

相似文献

1
Vascular-centric mapping of in vivo blood oxygen saturation in preclinical models.
Microvasc Res. 2023 Jul;148:104518. doi: 10.1016/j.mvr.2023.104518. Epub 2023 Mar 8.
2
Multimodality imaging reveals angiogenic evolution in vivo during calvarial bone defect healing.
Angiogenesis. 2024 Feb;27(1):105-119. doi: 10.1007/s10456-023-09899-0. Epub 2023 Nov 30.
3
Retinal oximetry and systemic arterial oxygen levels.
Acta Ophthalmol. 2018 Nov;96 Suppl A113:1-44. doi: 10.1111/aos.13932.
4
Non-invasive assessment of cerebral oxygenation: A comparison of retinal and transcranial oximetry.
PLoS One. 2018 Jan 5;13(1):e0190612. doi: 10.1371/journal.pone.0190612. eCollection 2018.
5
6
Oximetry of retinal vessels by dual-wavelength imaging: calibration and influence of pigmentation.
J Appl Physiol (1985). 1999 Feb;86(2):748-58. doi: 10.1152/jappl.1999.86.2.748.
8
Photoacoustic tomography imaging and estimation of oxygen saturation of hemoglobin in ocular tissue of rabbits.
Exp Eye Res. 2015 Sep;138:153-8. doi: 10.1016/j.exer.2015.05.022. Epub 2015 Jun 3.

引用本文的文献

1
Engineering next-generation oxygen-generating scaffolds to enhance bone regeneration.
Trends Biotechnol. 2025 Mar;43(3):540-554. doi: 10.1016/j.tibtech.2024.09.006. Epub 2024 Sep 28.
2
BLEscope: A Bluetooth Low Energy (BLE) Microscope for Wireless Multicontrast Functional Imaging.
IEEE Trans Biomed Eng. 2025 Feb;72(2):675-688. doi: 10.1109/TBME.2024.3467221. Epub 2025 Jan 22.
3
Multimodality imaging reveals angiogenic evolution in vivo during calvarial bone defect healing.
Angiogenesis. 2024 Feb;27(1):105-119. doi: 10.1007/s10456-023-09899-0. Epub 2023 Nov 30.

本文引用的文献

1
State-of-the-art techniques for imaging the vascular microenvironment in craniofacial bone tissue engineering applications.
Am J Physiol Cell Physiol. 2022 Nov 1;323(5):C1524-C1538. doi: 10.1152/ajpcell.00195.2022. Epub 2022 Oct 3.
2
In vivo phenotyping of the microvasculature in necrotizing enterocolitis with multicontrast optical imaging.
Microcirculation. 2022 Oct;29(6-7):e12768. doi: 10.1111/micc.12768. Epub 2022 Jun 1.
4
VascuViz: a multimodality and multiscale imaging and visualization pipeline for vascular systems biology.
Nat Methods. 2022 Feb;19(2):242-254. doi: 10.1038/s41592-021-01363-5. Epub 2022 Feb 10.
5
Electrospun Fiber Mesh for High-Resolution Measurements of Oxygen Tension in Cranial Bone Defect Repair.
ACS Appl Mater Interfaces. 2019 Sep 18;11(37):33548-33558. doi: 10.1021/acsami.9b08341. Epub 2019 Sep 4.
7
Oxyphor 2P: A High-Performance Probe for Deep-Tissue Longitudinal Oxygen Imaging.
Cell Metab. 2019 Mar 5;29(3):736-744.e7. doi: 10.1016/j.cmet.2018.12.022. Epub 2019 Jan 24.
8
A miniature multi-contrast microscope for functional imaging in freely behaving animals.
Nat Commun. 2019 Jan 9;10(1):99. doi: 10.1038/s41467-018-07926-z.
9
Phenotyping the Microvasculature in Critical-Sized Calvarial Defects via Multimodal Optical Imaging.
Tissue Eng Part C Methods. 2018 Jul;24(7):430-440. doi: 10.1089/ten.TEC.2018.0090.
10
Measuring blood oxygen saturation along a capillary vessel in human.
Biomed Opt Express. 2017 Oct 30;8(11):5342-5348. doi: 10.1364/BOE.8.005342. eCollection 2017 Nov 1.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验