Suppr超能文献

通过多模态光学成像对临界尺寸颅骨缺损中的微血管进行表型分析。

Phenotyping the Microvasculature in Critical-Sized Calvarial Defects via Multimodal Optical Imaging.

机构信息

1 Department of Chemical and Biomolecular Engineering, Johns Hopkins University Whiting School of Engineering , Baltimore, Maryland.

2 Department of Biomedical Engineering, Johns Hopkins University School of Medicine , Baltimore, Maryland.

出版信息

Tissue Eng Part C Methods. 2018 Jul;24(7):430-440. doi: 10.1089/ten.TEC.2018.0090.

Abstract

Tissue-engineered scaffolds are a powerful means of healing craniofacial bone defects arising from trauma or disease. Murine models of critical-sized bone defects are especially useful in understanding the role of microenvironmental factors such as vascularization on bone regeneration. Here, we demonstrate the capability of a novel multimodality imaging platform capable of acquiring in vivo images of microvascular architecture, microvascular blood flow, and tracer/cell tracking via intrinsic optical signaling (IOS), laser speckle contrast (LSC), and fluorescence (FL) imaging, respectively, in a critical-sized calvarial defect model. Defects that were 4 mm in diameter were made in the calvarial regions of mice followed by the implantation of osteoconductive scaffolds loaded with human adipose-derived stem cells embedded in fibrin gel. Using IOS imaging, we were able to visualize microvascular angiogenesis at the graft site and extracted morphological information such as vessel radius, length, and tortuosity two weeks after scaffold implantation. FL imaging allowed us to assess functional characteristics of the angiogenic vessel bed, such as time-to-peak of a fluorescent tracer, and also allowed us to track the distribution of fluorescently tagged human umbilical vein endothelial cells. Finally, we used LSC to characterize the in vivo hemodynamic response and maturity of the remodeled microvessels in the scaffold microenvironment. In this study, we provide a methodical framework for imaging tissue-engineered scaffolds, processing the images to extract key microenvironmental parameters, and visualizing these data in a manner that enables the characterization of the vascular phenotype and its effect on bone regeneration. Such multimodality imaging platforms can inform optimization and design of tissue-engineered scaffolds and elucidate the factors that promote enhanced vascularization and bone formation.

摘要

组织工程支架是治疗创伤或疾病引起的颅面骨缺损的一种有效手段。 临界尺寸骨缺损的小鼠模型特别有助于理解血管生成等微环境因素对骨再生的作用。 在这里,我们展示了一种新型多模态成像平台的能力,该平台能够分别通过固有光学信号 (IOS)、激光散斑对比 (LSC) 和荧光 (FL) 成像来获取微血管结构、微血管血流和示踪剂/细胞示踪的体内图像在临界尺寸颅骨缺损模型中。 在小鼠颅骨区域制造直径为 4 毫米的缺陷,然后在纤维蛋白凝胶中植入负载有人脂肪来源干细胞的骨传导支架。 使用 IOS 成像,我们能够在移植物部位可视化微血管血管生成,并在支架植入两周后提取血管半径、长度和迂曲度等形态信息。 FL 成像使我们能够评估血管生成血管床的功能特征,例如荧光示踪剂的达峰时间,还使我们能够跟踪荧光标记的人脐静脉内皮细胞的分布。 最后,我们使用 LSC 来表征支架微环境中重构微血管的体内血液动力学反应和成熟度。 在这项研究中,我们提供了一种用于成像组织工程支架的系统方法,对图像进行处理以提取关键的微环境参数,并以能够表征血管表型及其对骨再生影响的方式可视化这些数据。 这种多模态成像平台可以为组织工程支架的优化和设计提供信息,并阐明促进血管生成和骨形成的因素。

相似文献

本文引用的文献

7
Fluorescent Cell Imaging in Regenerative Medicine.再生医学中的荧光细胞成像
Biomed Eng Comput Biol. 2016 May 2;7(Suppl 1):29-33. doi: 10.4137/BECB.S39045. eCollection 2016.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验