Suppr超能文献

原位数字全息显微镜快速检测和监测有害甲藻——凯伦藻。

In situ digital holographic microscopy for rapid detection and monitoring of the harmful dinoflagellate, Karenia brevis.

机构信息

Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, 33431, FL United States of America; Harbor Branch Oceanographic Institute, Florida Atlantic University, Fort Pierce, 34946, FL United States of America.

Department of Mechanical Engineering, University of Minnesota, Minneapolis, 55455, MN United States of America; St. Anthony Falls Laboratory, University of Minnesota, Minneapolis, 55455, MN United States of America.

出版信息

Harmful Algae. 2023 Mar;123:102401. doi: 10.1016/j.hal.2023.102401. Epub 2023 Feb 8.

Abstract

Karenia brevis blooms, also known as red tide, are a recurring problem in the coastal Gulf of Mexico. These blooms have the capacity to inflict substantial damage to human and animal health as well as local economies. Thus, monitoring and detection of K. brevis blooms at all life stages and cell concentrations is essential for ensuring public safety. Current K. brevis monitoring methods have several limitations, including size resolution limits and concentration ranges, limited capacity for spatial and temporal profiling, and/or small sample volume processing. Here, a novel monitoring method wherein an autonomous digital holographic imaging microscope (AUTOHOLO), that overcomes these limitations and can characterize K. brevis concentrations in situ, is presented. Using the AUTOHOLO, in situ field measurements were conducted in the coastal Gulf of Mexico during an active K. brevis bloom over the 2020-21 winter season. Surface and sub-surface water samples collected during these field studies were also analyzed in the lab using benchtop holographic imaging and flow cytometry for validation. A convolutional neural network was trained for automated classification of K. brevis at all concentration ranges. The network was validated with manual counts and flow cytometry, yielding a 90% accuracy across diverse datasets with varying K. brevis concentrations. The usefulness of pairing the AUTOHOLO with a towing system was also demonstrated for characterizing particle abundance over large spatial distances, which could potentially facilitate characterization of spatial distributions of K. brevis during bloom events. Future applications of the AUTOHOLO can include integration into existing HAB monitoring networks to enhance detection capabilities for K. brevis in aquatic environments around the world.

摘要

短凯伦藻水华,又称赤潮,是墨西哥湾沿海地区反复出现的问题。这些水华有能力对人类和动物健康以及当地经济造成重大损害。因此,监测和检测短凯伦藻的所有生命阶段和细胞浓度对于确保公共安全至关重要。目前的短凯伦藻监测方法存在几个局限性,包括尺寸分辨率限制和浓度范围、有限的时空分析能力,以及/或小样本量处理。在这里,提出了一种新的监测方法,即自主数字全息成像显微镜(AUTOHOLO),它克服了这些限制,可以原位表征短凯伦藻的浓度。使用 AUTOHOLO,在 2020-21 年冬季期间的一次活跃的短凯伦藻水华期间,在墨西哥湾沿海进行了现场测量。在这些野外研究中收集的地表水和地表水样本也在实验室中使用台式全息成像和流式细胞术进行分析,以进行验证。针对所有浓度范围的短凯伦藻,训练了一个卷积神经网络进行自动分类。该网络通过手动计数和流式细胞术进行了验证,在具有不同短凯伦藻浓度的各种数据集上的准确率达到 90%。还展示了将 AUTOHOLO 与拖曳系统配对的有用性,用于在大空间距离上表征颗粒丰度,这可能有助于在水华事件期间对短凯伦藻的空间分布进行特征描述。AUTOHOLO 的未来应用可以包括集成到现有的有害藻华监测网络中,以增强对全球水生环境中短凯伦藻的检测能力。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验