Suppr超能文献

人工智能在临床多参数流式细胞术和液质联用流式细胞术中的应用:关键工具和进展。

Artificial intelligence in clinical multiparameter flow cytometry and mass cytometry-key tools and progress.

机构信息

Department of Pathology and Laboratory Medicine, University of Texas, Southwestern Medical Center, Dallas, Texas, USA.

Lyda Hill Department of Bioinformatics, University of Texas, Southwestern Medical Center, Dallas, Texas, USA; Department of Cell and Molecular Biology, University of Texas, Southwestern Medical Center, Dallas, Texas, USA.

出版信息

Semin Diagn Pathol. 2023 Mar;40(2):120-128. doi: 10.1053/j.semdp.2023.02.004. Epub 2023 Mar 5.

Abstract

There are many research studies and emerging tools using artificial intelligence (AI) and machine learning to augment flow and mass cytometry workflows. Emerging AI tools can quickly identify common cell populations with continuous improvement of accuracy, uncover patterns in high-dimensional cytometric data that are undetectable by human analysis, facilitate the discovery of cell subpopulations, perform semi-automated immune cell profiling, and demonstrate potential to automate aspects of clinical multiparameter flow cytometric (MFC) diagnostic workflow. Utilizing AI in the analysis of cytometry samples can reduce subjective variability and assist in breakthroughs in understanding diseases. Here we review the diverse types of AI that are being applied to clinical cytometry data and how AI is driving advances in data analysis to improve diagnostic sensitivity and accuracy. We review supervised and unsupervised clustering algorithms for cell population identification, various dimensionality reduction techniques, and their utilities in visualization and machine learning pipelines, and supervised learning approaches for classifying entire cytometry samples.Understanding the AI landscape will enable pathologists to better utilize open source and commercially available tools, plan exploratory research projects to characterize diseases, and work with machine learning and data scientists to implement clinical data analysis pipelines.

摘要

有许多研究和新兴工具利用人工智能(AI)和机器学习来增强流式和液滴式细胞术工作流程。新兴的 AI 工具可以快速识别常见的细胞群体,准确性不断提高,揭示人类分析无法检测到的高维细胞测量数据中的模式,有助于发现细胞亚群,进行半自动免疫细胞分析,并展示自动化临床多参数流式细胞术(MFC)诊断工作流程某些方面的潜力。在细胞术样本分析中利用 AI 可以减少主观变异性,并有助于突破对疾病的理解。在这里,我们回顾了应用于临床细胞术数据的各种类型的 AI,以及 AI 如何推动数据分析的进展,以提高诊断的灵敏度和准确性。我们回顾了用于细胞群体识别的监督和无监督聚类算法、各种降维技术及其在可视化和机器学习管道中的应用,以及用于分类整个细胞术样本的监督学习方法。了解 AI 领域将使病理学家能够更好地利用开源和商业上可用的工具,规划探索性研究项目以描述疾病,并与机器学习和数据科学家合作实施临床数据分析管道。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验