Suppr超能文献

基于数据流的策略,以改进对机器学习模型的解释和理解。

Data Flow-Based Strategies to Improve the Interpretation and Understanding of Machine Learning Models.

作者信息

Brimacombe Michael

机构信息

CT Children's, University of Connecticut School of Medicine, 282 Washington Ave, Hartford, CT 06106, USA.

出版信息

Bioengineering (Basel). 2024 Nov 25;11(12):1189. doi: 10.3390/bioengineering11121189.

Abstract

Data flow-based strategies that seek to improve the understanding of A.I.-based results are examined here by carefully curating and monitoring the flow of data into, for example, artificial neural networks and random forest supervised models. While these models possess structures and related fitting procedures that are highly complex, careful restriction of the data being utilized by these models can provide insight into how they interpret data structures and associated variables sets and how they are affected by differing levels of variation in the data. The goal is improving our understanding of A.I.-based supervised modeling-based results and their stability across different data sources. Some guidelines are suggested for such first-stage adjustments and related data issues.

摘要

本文通过仔细筛选和监测流入例如人工神经网络和随机森林监督模型等的数据流动,研究了基于数据流的策略,这些策略旨在增进对基于人工智能的结果的理解。虽然这些模型拥有高度复杂的结构和相关拟合程序,但对这些模型所使用的数据进行仔细限制,可以深入了解它们如何解释数据结构和相关变量集,以及它们如何受到数据中不同程度变化的影响。目标是提高我们对基于人工智能的监督建模结果及其在不同数据源间稳定性的理解。针对此类第一阶段调整和相关数据问题提出了一些指导方针。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验