Suppr超能文献

基于集成学习的特征选择和数据平衡方法的阿尔茨海默病分类高效可解释模型

Efficient Explainable Models for Alzheimer's Disease Classification with Feature Selection and Data Balancing Approach Using Ensemble Learning.

作者信息

Dubey Yogita, Bhongade Aditya, Palsodkar Prachi, Fulzele Punit

机构信息

Department of Electronics and Telecommunication, Yeshwantrao Chavan College of Engineering, Nagpur 441110, India.

Department of Electronics Engineering, Yeshwantrao Chavan College of Engineering, Nagpur 441110, India.

出版信息

Diagnostics (Basel). 2024 Dec 10;14(24):2770. doi: 10.3390/diagnostics14242770.

Abstract

Alzheimer's disease (AD) is a progressive neurodegenerative disorder and is the most common cause of dementia. Early diagnosis of Alzheimer's disease is critical for better management and treatment outcomes, but it remains a challenging task due to the complex nature of the disease. Clinical data, including a range of cognitive, functional, and demographic variables, play a crucial role in Alzheimer's disease classification. Also, challenges such as data imbalance and high-dimensional feature sets often hinder model performance. This paper aims to propose a computationally efficient, reliable, and transparent machine learning-based framework for the classification of Alzheimer's disease patients. This framework is interpretable and helps medical practitioners learn complex patterns in patients. This study addresses these issues by employing boosting algorithms, for enhanced classification accuracy. To mitigate data imbalance, a random sampling technique is applied, ensuring a balanced representation of Alzheimer's and healthy cases. Extensive feature analysis was conducted to identify the most impactful clinical features followed by feature reduction techniques to focus on the most informative clinical features, reducing model complexity and overfitting risks. Explainable AI tools, such as SHAP, LIME, ALE, and ELI5 are integrated to provide transparency into the model's decision-making process, highlighting key features influencing the classification and allowing clinicians to understand and trust the key features driving the predictions. This approach results in a robust, interpretable, and clinically relevant framework for Alzheimer's disease diagnosis. The proposed approach achieved the best accuracy of 95%, demonstrating its effectiveness and potential for reliable early diagnosis of Alzheimer's disease. This study demonstrates that integrating ensemble learning algorithms and explainable AI, while using a balanced dataset with feature selection, improves quantitative results and interpretability. This approach offers a promising method for early and better-informed clinical decisions.

摘要

阿尔茨海默病(AD)是一种进行性神经退行性疾病,也是痴呆症最常见的病因。阿尔茨海默病的早期诊断对于更好的管理和治疗效果至关重要,但由于该疾病的复杂性,这仍然是一项具有挑战性的任务。临床数据,包括一系列认知、功能和人口统计学变量,在阿尔茨海默病分类中起着至关重要的作用。此外,数据不平衡和高维特征集等挑战常常阻碍模型性能。本文旨在提出一种基于机器学习的计算高效、可靠且透明的框架,用于阿尔茨海默病患者的分类。该框架具有可解释性,有助于医学从业者了解患者的复杂模式。本研究通过采用提升算法来解决这些问题,以提高分类准确率。为了缓解数据不平衡问题,应用了随机抽样技术,确保阿尔茨海默病患者和健康病例得到均衡的呈现。进行了广泛的特征分析,以识别最具影响力的临床特征,随后采用特征约简技术专注于最具信息性的临床特征,降低模型复杂性和过拟合风险。集成了可解释人工智能工具,如SHAP、LIME、ALE和ELI5,以提供模型决策过程的透明度,突出影响分类的关键特征,并使临床医生能够理解和信任驱动预测的关键特征。这种方法产生了一个用于阿尔茨海默病诊断的强大、可解释且与临床相关的框架。所提出的方法达到了95%的最佳准确率,证明了其在阿尔茨海默病可靠早期诊断方面的有效性和潜力。本研究表明,在使用经过特征选择的平衡数据集时,集成集成学习算法和可解释人工智能可提高定量结果和可解释性。这种方法为早期和更明智的临床决策提供了一种有前景的方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bd00/11674285/f52fc37bd410/diagnostics-14-02770-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验