Department of Genetics, Cell Biology and Development, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA.
Center for Precision Plant Genomics, University of Minnesota, Minneapolis, MN, USA.
Plant Genome. 2023 Jun;16(2):e20312. doi: 10.1002/tpg2.20312. Epub 2023 Mar 9.
Plant biotechnology is rife with new advances in transformation and genome engineering techniques. A common requirement for delivery and coordinated expression in plant cells, however, places the design and assembly of transformation constructs at a crucial juncture as desired reagent suites grow more complex. Modular cloning principles have simplified some aspects of vector design, yet many important components remain unavailable or poorly adapted for rapid implementation in biotechnology research. Here, we describe a universal Golden Gate cloning toolkit for vector construction. The toolkit chassis is compatible with the widely accepted Phytobrick standard for genetic parts, and supports assembly of arbitrarily complex T-DNAs through improved capacity, positional flexibility, and extensibility in comparison to extant kits. We also provision a substantial library of newly adapted Phytobricks, including regulatory elements for monocot and dicot gene expression, and coding sequences for genes of interest such as reporters, developmental regulators, and site-specific recombinases. Finally, we use a series of dual-luciferase assays to measure contributions to expression from promoters, terminators, and from cross-cassette interactions attributable to enhancer elements in certain promoters. Taken together, these publicly available cloning resources can greatly accelerate the testing and deployment of new tools for plant engineering.
植物生物技术在转化和基因组工程技术方面有许多新的进展。然而,在植物细胞中进行传递和协调表达的共同要求,使得转化构建体的设计和组装处于一个关键的节点,因为所需的试剂套件变得越来越复杂。模块化克隆原则简化了载体设计的某些方面,但许多重要的组件仍然不可用或难以适应生物技术研究中的快速实施。在这里,我们描述了一个用于载体构建的通用 Golden Gate 克隆工具包。该工具包底盘与广泛接受的遗传部件 Phytobrick 标准兼容,并通过提高容量、位置灵活性和与现有工具包相比的可扩展性,支持任意复杂的 T-DNA 的组装。我们还提供了大量新适应的 Phytobricks 库,包括单子叶植物和双子叶植物基因表达的调控元件,以及报告基因、发育调节剂和位点特异性重组酶等感兴趣基因的编码序列。最后,我们使用一系列双荧光素酶测定来测量启动子、终止子以及某些启动子中的增强子元件归因于跨盒相互作用对表达的贡献。总之,这些公开可用的克隆资源可以大大加快植物工程新工具的测试和部署。