Department of Pharmaceutics, Ghent University, Ottergemsesteenweg 460, 9000, Ghent, Belgium.
Polymer Chemistry Research group, Centre of Macromolecular Chemistry (CMaC), Department of Organic and Macromolecular Chemistry, Ghent University, Krijgslaan 281, S4-bis, 9000, Ghent, Belgium.
Angew Chem Int Ed Engl. 2023 Jun 5;62(23):e202301102. doi: 10.1002/anie.202301102. Epub 2023 Apr 12.
Polyethylene glycol (PEG) is considered as the gold standard for colloidal stabilization of nanomedicines, yet PEG is non-degradable and lacks functionality on the backbone. Herein, we introduce concomitantly PEG backbone functionality and degradability via a one-step modification with 1,2,4-triazoline-3,5-diones (TAD) under green light. The TAD-PEG conjugates are degradable in aqueous medium under physiological conditions, with the rate of hydrolysis depending on pH and temperature. Subsequently, a PEG-lipid is modified with TAD-derivatives and successfully used for messenger RNA (mRNA) lipid nanoparticle (LNP) delivery, thereby improving mRNA transfection efficiency on multiple cell cultures in vitro. In vivo, in mice, mRNA LNP formulation exhibited a similar tissue distribution as common LNPs, with a slight decrease in transfection efficiency. Our findings pave the road towards the design of degradable, backbone-functionalized PEG for applications in nanomedicine and beyond.
聚乙二醇(PEG)被认为是胶体稳定纳米药物的金标准,但 PEG 不可降解,且主链缺乏功能。在此,我们通过在绿光下用 1,2,4-三唑-3,5-二酮(TAD)一步修饰,同时引入 PEG 主链功能和可降解性。TAD-PEG 缀合物在生理条件下的水介质中可降解,水解速率取决于 pH 值和温度。随后,用 TAD 衍生物对 PEG-脂质进行修饰,并成功用于信使 RNA(mRNA)脂质纳米颗粒(LNP)的递送,从而提高了多种细胞培养物的体外 mRNA 转染效率。在体内,在小鼠中,mRNA LNP 制剂表现出与普通 LNP 相似的组织分布,但转染效率略有下降。我们的研究结果为设计可降解、主链功能化的 PEG 铺平了道路,可将其应用于纳米医学及其他领域。