Laboratory of Advanced Materials, Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai, 200438, China.
Henan Engineering Center of New Energy Battery Materials, Henan D&A Engineering Center of Advanced Battery Materials, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, China.
Small. 2023 Jun;19(23):e2207374. doi: 10.1002/smll.202207374. Epub 2023 Mar 10.
The high-rate ethanol electrosynthesis from CO is challenging due to the low selectivity and poor activity, which requires the competition with other reduction products and H . Here, the electrochemical reconstruction of Cs Cu Cl perovskite to form surface Cl-bonded, low-coordinated Cs modified Cu(200) nanocubes (CuClCs), is demonstrated. Density functional theory calculations reveal that the CuClCs structure possesses low Bader charges and a large coordination capacity; and thus, can promote the CO -to-ethanol pathway via stabilizing C-O bond in oxygenate intermediates. The CuClCs catalyst exhibits outstanding partial current densities for producing ethanol (up to 2124 ± 54 mA cm ) as one of the highest reported values in the electrochemical CO or CO reduction. This work suggests an attractive strategy with surface alkali-metal cations for ampere-level CO -to-ethanol electrosynthesis.
由于选择性和活性低,从 CO 中高电流密度乙醇电合成具有挑战性,这需要与其他还原产物和 H 竞争。在这里,展示了 CsCuCl 钙钛矿的电化学重构,以形成表面 Cl 键合、低配位 Cs 修饰的 Cu(200)纳米立方体 (CuClCs)。密度泛函理论计算表明,CuClCs 结构具有低 Bader 电荷和大的配位能力;因此,可以通过稳定含氧中间体中的 C-O 键,促进 CO 到乙醇的途径。CuClCs 催化剂表现出出色的产生乙醇的部分电流密度(高达 2124 ± 54 mA cm ),是电化学 CO 或 CO 还原中报道的最高值之一。这项工作为实现安培级 CO 到乙醇的电合成提供了一种有吸引力的表面碱金属阳离子策略。