Suppr超能文献

使用三维连接体构建用于选择性分离己烷异构体的金属有机框架

Engineering Metal-Organic Frameworks for Selective Separation of Hexane Isomers Using 3-Dimensional Linkers.

作者信息

Smoljan Courtney S, Li Zhao, Xie Haomiao, Setter Caitlin J, Idrees Karam B, Son Florencia A, Formalik Filip, Shafaie Saman, Islamoglu Timur, Macreadie Lauren K, Snurr Randall Q, Farha Omar K

机构信息

Department of Chemical & Biological Engineering, Northwestern University, Evanston, Illinois 60208, United States.

Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States.

出版信息

J Am Chem Soc. 2023 Mar 22;145(11):6434-6441. doi: 10.1021/jacs.2c13715. Epub 2023 Mar 10.

Abstract

Metal-organic frameworks (MOFs) are highly tunable materials with potential for use as porous media in non-thermal adsorption or membrane-based separations. However, many separations target molecules with sub-angstrom differences in size, requiring precise control over the pore size. Herein, we demonstrate that this precise control can be achieved by installing a three-dimensional linker in an MOF with one-dimensional channels. Specifically, we synthesized single crystals and bulk powder of , an isostructural framework to MIL-53 with bicyclo[1.1.1]pentane-1,3-dicarboxylic acid as the organic linker component. Using variable-temperature X-ray diffraction studies, we show that increasing linker dimensionality limits structural breathing relative to MIL-53. Furthermore, single-component adsorption isotherms demonstrate the efficacy of this material for separating hexane isomers based on the different sizes and shapes of these isomers.

摘要

金属有机框架材料(MOFs)是具有高度可调性的材料,有潜力用作非热吸附或基于膜的分离过程中的多孔介质。然而,许多分离目标分子的尺寸差异在亚埃级别,这需要对孔径进行精确控制。在此,我们证明通过在具有一维通道的MOF中安装三维连接体可以实现这种精确控制。具体而言,我们合成了 的单晶和体相粉末,它是与MIL-53同构的框架,以双环[1.1.1]戊烷-1,3-二羧酸作为有机连接体成分。通过变温X射线衍射研究,我们表明相对于MIL-53,连接体维度的增加限制了结构呼吸。此外,单组分吸附等温线证明了这种材料基于己烷异构体不同的尺寸和形状来分离它们的有效性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验