Suppr超能文献

在递增大小的线性独立积基组内重构局域势。

Local Potentials Reconstructed within Linearly Independent Product Basis Sets of Increasing Size.

机构信息

Department of Chemistry, The University of Western Ontario, London, Ontario N6A 5B7, Canada.

出版信息

J Phys Chem A. 2023 Mar 23;127(11):2664-2669. doi: 10.1021/acs.jpca.3c00119. Epub 2023 Mar 10.

Abstract

Given a matrix representation of a local potential () within a one-electron basis set of functions that form linearly independent products (LIP), it is possible to construct a well-defined local potential that is equivalent to () within that basis set and has the form of an expansion in basis function products. Recently, we showed that for exchange-correlation potentials () defined on the infinite-dimensional Hilbert space, the potentials reconstructed from matrices of () within minimal LIP basis sets of occupied Kohn-Sham orbitals bear only qualitative resemblance to the originals. Here, we show that if the LIP basis set is enlarged by including low-lying virtual Kohn-Sham orbitals, the agreement between and () improves to the extent that the basis function products are appropriate as a basis for (). These findings validate the LIP technology as a rigorous potential reconstruction method.

摘要

给定在形成线性独立乘积(LIP)的单电子基函数集中的局部势能()的矩阵表示,可以构造一个与()在该基集中等效且具有基函数乘积展开形式的明确局部势能()。最近,我们表明,对于在无穷维 Hilbert 空间上定义的交换相关势(),从占据 Kohn-Sham 轨道的最小 LIP 基集中的()矩阵重建的势()与原始势只有定性相似。在这里,我们表明,如果通过包括低能虚拟 Kohn-Sham 轨道来扩大 LIP 基集,则()和()之间的一致性会提高,以至于基函数乘积适合作为()的基础。这些发现验证了 LIP 技术作为一种严格的势能重建方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/ae37/10042162/a7c00e48505d/jp3c00119_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验