Suppr超能文献

使用卷积递归神经网络建模的面部感知的神经关联

Neural correlates of face perception modeled with a convolutional recurrent neural network.

作者信息

O'Reilly Jamie A, Wehrman Jordan, Carey Aaron, Bedwin Jennifer, Hourn Thomas, Asadi Fawad, Sowman Paul F

机构信息

School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand.

Mind and Brain Institute, Department of Psychology, University of Sydney, New South Wales 2006, Australia.

出版信息

J Neural Eng. 2023 Apr 3;20(2). doi: 10.1088/1741-2552/acc35b.

Abstract

Event-related potential (ERP) sensitivity to faces is predominantly characterized by an N170 peak that has greater amplitude and shorter latency when elicited by human faces than images of other objects. We aimed to develop a computational model of visual ERP generation to study this phenomenon which consisted of a three-dimensional convolutional neural network (CNN) connected to a recurrent neural network (RNN).The CNN provided image representation learning, complimenting sequence learning of the RNN for modeling visually-evoked potentials. We used open-access data from ERP Compendium of Open Resources and Experiments (40 subjects) to develop the model, generated synthetic images for simulating experiments with a generative adversarial network, then collected additional data (16 subjects) to validate predictions of these simulations. For modeling, visual stimuli presented during ERP experiments were represented as sequences of images (time x pixels). These were provided as inputs to the model. By filtering and pooling over spatial dimensions, the CNN transformed these inputs into sequences of vectors that were passed to the RNN. The ERP waveforms evoked by visual stimuli were provided to the RNN as labels for supervised learning. The whole model was trained end-to-end using data from the open-access dataset to reproduce ERP waveforms evoked by visual events.Cross-validation model outputs strongly correlated with open-access (= 0.98) and validation study data (= 0.78). Open-access and validation study data correlated similarly (= 0.81). Some aspects of model behavior were consistent with neural recordings while others were not, suggesting promising albeit limited capacity for modeling the neurophysiology of face-sensitive ERP generation.The approach developed in this work is potentially of significant value for visual neuroscience research, where it may be adapted for multiple contexts to study computational relationships between visual stimuli and evoked neural activity.

摘要

与事件相关的电位(ERP)对面孔的敏感性主要表现为一个N170峰值,当由人脸引发时,该峰值的幅度更大,潜伏期更短,而由其他物体的图像引发时则不然。我们旨在开发一种视觉ERP生成的计算模型来研究这一现象,该模型由连接到循环神经网络(RNN)的三维卷积神经网络(CNN)组成。CNN提供图像表征学习,补充RNN的序列学习以对视觉诱发电位进行建模。我们使用来自开放资源和实验的ERP纲要的开放获取数据(40名受试者)来开发模型,使用生成对抗网络生成合成图像以模拟实验,然后收集额外的数据(16名受试者)来验证这些模拟的预测。对于建模,ERP实验期间呈现的视觉刺激被表示为图像序列(时间x像素)。这些被作为输入提供给模型。通过在空间维度上进行滤波和池化,CNN将这些输入转换为传递给RNN的向量序列。视觉刺激诱发的ERP波形作为监督学习的标签提供给RNN。使用来自开放获取数据集的数据对整个模型进行端到端训练,以重现视觉事件诱发的ERP波形。交叉验证模型输出与开放获取数据(=0.98)和验证研究数据(=0.78)高度相关。开放获取数据和验证研究数据的相关性相似(=0.81)。模型行为的某些方面与神经记录一致,而其他方面则不一致,这表明在对面孔敏感的ERP生成的神经生理学建模方面虽然能力有限但前景乐观。这项工作中开发的方法对于视觉神经科学研究可能具有重要价值,在该研究中,它可能适用于多种情境,以研究视觉刺激与诱发的神经活动之间的计算关系。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验