Suppr超能文献

各种驱动因素对空气污染事件的贡献:基于机器学习视角的可解释性分析

Contributions of various driving factors to air pollution events: Interpretability analysis from Machine learning perspective.

作者信息

Li Tianshuai, Zhang Qingzhu, Peng Yanbo, Guan Xu, Li Lei, Mu Jiangshan, Wang Xinfeng, Yin Xianwei, Wang Qiao

机构信息

Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266003, PR China.

Big Data Research Center for Ecology and Environment, Environment Research Institute, Shandong University, Qingdao 266003, PR China; Shandong Academy for Environmental Planning, Jinan 250101, PR China.

出版信息

Environ Int. 2023 Mar;173:107861. doi: 10.1016/j.envint.2023.107861. Epub 2023 Mar 4.

Abstract

The air quality in China has been improved substantially, however fine particulate matter (PM) still remain at a high level in many areas. PM pollution is a complex process that is attributed to gaseous precursors, chemical, and meteorological factors. Quantifying the contribution of each variable to air pollution can facilitate the formulation of effective policies to precisely eliminate air pollution. In this study, we first used decision plot to map out the decision process of the Random Forest (RF) model for a single hourly data set and constructed a framework for analyzing the causes of air pollution using multiple interpretable methods. Permutation importance was used to qualitatively analyze the effect of each variable on PM concentrations. The sensitivity of secondary inorganic aerosols (SIA): SO, NO and NH to PM was verified by Partial dependence plot (PDP). Shapley Additive Explanation (Shapley) was used to quantify the contribution of drivers behind the ten air pollution events. The RF model can accurately predict PM concentrations, with determination coefficient (R) of 0.94, root mean square error (RMSE) and mean absolute error (MAE) of 9.4 μg/m and 5.7 μg/m, respectively. This study revealed that the order of sensitivity of SIA to PM was NH>NO>SO. Fossil fuel and biomass combustion may be contributing factors to air pollution events in Zibo in 2021 autumn-winter. NH contributed 19.9-65.4 μg/m among ten air pollution events (APs). K, NO, EC and OC were the other main drivers, contributing 8.7 ± 2.7 μg/m, 6.8 ± 7.5 μg/m, 3.6 ± 5.8 μg/m and 2.5 ± 2.0 μg/m, respectively. Lower temperature and higher humidity were vital factors that promoted the formation of NO. Our study may provide a methodological framework for precise air pollution management.

摘要

中国的空气质量已得到显著改善,然而,许多地区的细颗粒物(PM)水平仍然很高。PM污染是一个复杂的过程,归因于气态前体、化学和气象因素。量化每个变量对空气污染的贡献有助于制定有效的政策,以精确消除空气污染。在本研究中,我们首先使用决策图来绘制单个每小时数据集的随机森林(RF)模型的决策过程,并构建了一个使用多种可解释方法分析空气污染原因的框架。使用排列重要性来定性分析每个变量对PM浓度的影响。通过部分依赖图(PDP)验证了二次无机气溶胶(SIA):SO、NO和NH对PM的敏感性。使用Shapley加法解释(Shapley)来量化十次空气污染事件背后驱动因素的贡献。RF模型能够准确预测PM浓度,决定系数(R)为0.94,均方根误差(RMSE)和平均绝对误差(MAE)分别为9.4μg/m和5.7μg/m。本研究表明,SIA对PM的敏感性顺序为NH>NO>SO。化石燃料和生物质燃烧可能是2021年淄博秋冬空气污染事件的促成因素。在十次空气污染事件(APs)中,NH的贡献为19.9 - 65.4μg/m。K、NO、EC和OC是其他主要驱动因素,分别贡献8.7±2.7μg/m、6.8±7.5μg/m、3.6±5.8μg/m和2.5±2.0μg/m。较低的温度和较高的湿度是促进NO形成的关键因素。我们的研究可能为精确的空气污染管理提供一个方法框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验