Suppr超能文献

脑膜瘤的弥散磁共振成像微观结构评估:通过定量组织学研究平均弥散度和各向异性分数的来源。

Meningioma microstructure assessed by diffusion MRI: An investigation of the source of mean diffusivity and fractional anisotropy by quantitative histology.

机构信息

Medical Radiation Physics, Clinical Sciences, Lund University, Lund, Sweden; F. M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA; Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, MD, USA.

Faculty of Information Technology, Czech Technical University in Prague, Prague, Czech Republic.

出版信息

Neuroimage Clin. 2023;37:103365. doi: 10.1016/j.nicl.2023.103365. Epub 2023 Mar 2.

Abstract

BACKGROUND

Mean diffusivity (MD) and fractional anisotropy (FA) from diffusion MRI (dMRI) have been associated with cell density and tissue anisotropy across tumors, but it is unknown whether these associations persist at the microscopic level.

PURPOSE

To quantify the degree to which cell density and anisotropy, as determined from histology, account for the intra-tumor variability of MD and FA in meningioma tumors. Furthermore, to clarify whether other histological features account for additional intra-tumor variability of dMRI parameters.

MATERIALS AND METHODS

We performed ex-vivo dMRI at 200 μm isotropic resolution and histological imaging of 16 excised meningioma tumor samples. Diffusion tensor imaging (DTI) was used to map MD and FA, as well as the in-plane FA (FA). Histology images were analyzed in terms of cell nuclei density (CD) and structure anisotropy (SA; obtained from structure tensor analysis) and were used separately in a regression analysis to predict MD and FA, respectively. A convolutional neural network (CNN) was also trained to predict the dMRI parameters from histology patches. The association between MRI and histology was analyzed in terms of out-of-sample (R) on the intra-tumor level and within-sample R across tumors. Regions where the dMRI parameters were poorly predicted from histology were analyzed to identify features apart from CD and SA that could influence MD and FA, respectively.

RESULTS

Cell density assessed by histology poorly explained intra-tumor variability of MD at the mesoscopic level (200 μm), as median R = 0.04 (interquartile range 0.01-0.26). Structure anisotropy explained more of the variation in FA (median R = 0.31, 0.20-0.42). Samples with low R for FA exhibited low variations throughout the samples and thus low explainable variability, however, this was not the case for MD. Across tumors, CD and SA were clearly associated with MD (R = 0.60) and FA (R = 0.81), respectively. In 37% of the samples (6 out of 16), cell density did not explain intra-tumor variability of MD when compared to the degree explained by the CNN. Tumor vascularization, psammoma bodies, microcysts, and tissue cohesivity were associated with bias in MD prediction based solely on CD. Our results support that FA is high in the presence of elongated and aligned cell structures, but low otherwise.

CONCLUSION

Cell density and structure anisotropy account for variability in MD and FA across tumors but cell density does not explain MD variations within the tumor, which means that low or high values of MD locally may not always reflect high or low tumor cell density. Features beyond cell density need to be considered when interpreting MD.

摘要

背景

从弥散磁共振成像(dMRI)获得的平均扩散系数(MD)和各向异性分数(FA)与肿瘤内的细胞密度和组织各向异性有关,但尚不清楚这些相关性是否在微观水平上仍然存在。

目的

定量分析组织学确定的细胞密度和各向异性在脑膜瘤肿瘤内 MD 和 FA 的肿瘤内变异性中的程度。此外,阐明其他组织学特征是否可以解释 dMRI 参数的其他肿瘤内变异性。

材料与方法

我们在 200μm 各向同性分辨率下进行了离体 dMRI,并对 16 个切除的脑膜瘤肿瘤样本进行了组织学成像。弥散张量成像(DTI)用于绘制 MD 和 FA 以及平面内 FA(FA)。组织学图像根据细胞核密度(CD)和结构各向异性(SA;通过结构张量分析获得)进行分析,并分别在回归分析中用于预测 MD 和 FA。还训练了一个卷积神经网络(CNN),以便从组织学斑块预测 dMRI 参数。通过在肿瘤内的样本外(R)和跨肿瘤的样本内 R 分析 MRI 和组织学之间的关联。分析了 dMRI 参数难以从组织学预测的区域,以确定除 CD 和 SA 之外的可能影响 MD 和 FA 的特征。

结果

组织学评估的细胞密度在介观水平(200μm)上对 MD 的肿瘤内变异性解释不佳,中位数 R=0.04(四分位距 0.01-0.26)。结构各向异性解释了 FA 更多的变异性(中位数 R=0.31,0.20-0.42)。FA 的 R 值较低的样本在整个样本中表现出低变化,因此可解释的变异性低,但 MD 情况并非如此。跨肿瘤,CD 和 SA 与 MD(R=0.60)和 FA(R=0.81)分别明确相关。在 37%的样本(16 个中的 6 个)中,与 CNN 解释的程度相比,细胞密度并不能解释 MD 的肿瘤内变异性。肿瘤血管生成、砂粒体、微囊和组织内聚力与仅基于 CD 的 MD 预测偏倚有关。我们的结果支持 FA 在存在拉长和对齐的细胞结构时较高,但否则较低。

结论

细胞密度和结构各向异性解释了肿瘤间 MD 和 FA 的变异性,但细胞密度不能解释肿瘤内的 MD 变化,这意味着局部的 MD 值低或高并不总是反映高或低的肿瘤细胞密度。解释 MD 时需要考虑细胞密度以外的特征。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/480c/10020119/b6357c7a880f/ga1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验