Suppr超能文献

多机器人自主导航的多目标轨迹规划与控制技术。

Multi-target trajectory planning and control technique for autonomous navigation of multiple robots.

机构信息

Robotics Laboratory, Mechanical Engineering Department, National Institute of Technology, Rourkela, Odisha 769008, India; Department of Mechanical Engineering, O.P. Jindal University, Raigarh, CG 496109, India.

Robotics Laboratory, Mechanical Engineering Department, National Institute of Technology, Rourkela, Odisha 769008, India.

出版信息

ISA Trans. 2023 Jul;138:650-669. doi: 10.1016/j.isatra.2023.02.029. Epub 2023 Feb 28.

Abstract

The autonomous robot has been the attraction point among robotic researchers since the last decade by virtue of increasing demand of automation in defence and intelligent industries. In the current research, a modified flow direction optimization algorithm (MFDA) and firefly algorithm (FA) are hybridized and implemented on wheeled robots to encounter multi-target trajectory optimization with smooth navigation by negotiating obstacles present within the workspace. Here, a hybrid algorithm is adopted for designing the controller with consideration of navigational parameters. A Petri-Net controller is also aided with the developed controller to resolve any conflict during navigation. The developed controller has been investigated on WEBOTS and MATLAB simulation environments coupled with real-time experiments by considering Khepera-II robot as wheeled robot. Single robot- multi-target, multiple robot single target and multiple robots-multiple target problems are tackled during the investigation. The outcomes of simulation are verified through real-time experimental outcomes by comparing results. Further, the proposed algorithm is tested for its suitability, precision, and stability. Finally, the developed controller is tested against existing techniques for authentication of proposed technique, and significant improvements of an average 34.2% is observed in trajectory optimization and 70.6% in time consumption.

摘要

自主机器人在过去十年中一直是机器人研究人员的关注点,因为国防和智能产业对自动化的需求不断增加。在当前的研究中,改进的流向优化算法(MFDA)和萤火虫算法(FA)被混合并应用于轮式机器人上,以在工作空间内遇到障碍物时通过协商来优化多目标轨迹,实现平滑导航。在这里,混合算法被采用来设计考虑导航参数的控制器。还借助开发的控制器使用 Petri-Net 控制器来解决导航过程中的任何冲突。在考虑到 Khepera-II 机器人作为轮式机器人的情况下,在 WEBOTS 和 MATLAB 仿真环境中进行了开发的控制器的研究,同时进行了实时实验。在研究过程中,解决了单机器人-多目标、多机器人-单目标和多机器人-多目标问题。通过比较结果,验证了仿真结果的真实性。此外,还对提出的算法进行了适用性、精度和稳定性测试。最后,针对所提出的技术进行了认证测试,观察到在轨迹优化方面有平均 34.2%的显著提高,在时间消耗方面有 70.6%的显著提高。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验