Section on Pathophysiology and Molecular Pharmacology, Joslin Diabetes Center, Boston, MA, USA.
Department of Microbiology and Immunobiology, Harvard Medical School, Boston, MA, USA.
ISME J. 2023 Jun;17(6):823-835. doi: 10.1038/s41396-023-01392-2. Epub 2023 Mar 10.
Carbohydrate utilization is critical to microbial survival. The phosphotransferase system (PTS) is a well-documented microbial system with a prominent role in carbohydrate metabolism, which can transport carbohydrates through forming a phosphorylation cascade and regulate metabolism by protein phosphorylation or interactions in model strains. However, those PTS-mediated regulated mechanisms have been underexplored in non-model prokaryotes. Here, we performed massive genome mining for PTS components in nearly 15,000 prokaryotic genomes from 4,293 species and revealed a high prevalence of incomplete PTSs in prokaryotes with no association to microbial phylogeny. Among these incomplete PTS carriers, a group of lignocellulose degrading clostridia was identified to have lost PTS sugar transporters and carry a substitution of the conserved histidine residue in the core PTS component, HPr (histidine-phosphorylatable phosphocarrier). Ruminiclostridium cellulolyticum was then selected as a representative to interrogate the function of incomplete PTS components in carbohydrate metabolism. Inactivation of the HPr homolog reduced rather than increased carbohydrate utilization as previously indicated. In addition to regulating distinct transcriptional profiles, PTS associated CcpA (Catabolite Control Protein A) homologs diverged from previously described CcpA with varied metabolic relevance and distinct DNA binding motifs. Furthermore, the DNA binding of CcpA homologs is independent of HPr homolog, which is determined by structural changes at the interface of CcpA homologs, rather than in HPr homolog. These data concordantly support functional and structural diversification of PTS components in metabolic regulation and bring novel understanding of regulatory mechanisms of incomplete PTSs in cellulose-degrading clostridia.
碳水化合物的利用对微生物的生存至关重要。磷酸转移酶系统(PTS)是一个有充分文献记录的微生物系统,在碳水化合物代谢中起着重要作用,它可以通过形成磷酸化级联来运输碳水化合物,并通过模型菌株中的蛋白磷酸化或相互作用来调节代谢。然而,这些 PTS 介导的调节机制在非模型原核生物中还没有得到充分的研究。在这里,我们对来自 4293 个物种的近 15000 个原核生物基因组进行了大规模的基因组挖掘,发现了原核生物中 PTS 不完整的高普遍性,与微生物系统发育无关。在这些不完整的 PTS 载体中,一组木质纤维素降解梭菌被鉴定为失去了 PTS 糖转运蛋白,并携带核心 PTS 成分 HPr(组氨酸可磷酸化磷酸载体)中保守组氨酸残基的取代。然后选择 Ruminiclostridium cellulolyticum 作为代表来研究碳水化合物代谢中不完整 PTS 成分的功能。HPr 同源物的失活减少了而不是增加了碳水化合物的利用,这与以前的指示相反。除了调节不同的转录谱外,PTS 相关的 CcpA(分解代谢物控制蛋白 A)同源物与以前描述的 CcpA 不同,具有不同的代谢相关性和不同的 DNA 结合基序。此外,CcpA 同源物的 DNA 结合不依赖于 HPr 同源物,这是由 CcpA 同源物界面的结构变化决定的,而不是在 HPr 同源物中。这些数据一致支持 PTS 成分在代谢调节中的功能和结构多样化,并为纤维素降解梭菌中不完整 PTS 的调节机制带来了新的认识。