Seenivasan Selvaraj, Shim Kyu In, Lim Chaesung, Kavinkumar Thangavel, Sivagurunathan Amarnath T, Han Jeong Woo, Kim Do-Heyoung
School of Chemical Engineering, Chonnam National University, 77 Yongbong-Ro, Gwangju, 61186, Republic of Korea.
Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea.
Nanomicro Lett. 2023 Mar 10;15(1):62. doi: 10.1007/s40820-023-01016-6.
Pseudo-capacitive negative electrodes remain a major bottleneck in the development of supercapacitor devices with high energy density because the electric double-layer capacitance of the negative electrodes does not match the pseudocapacitance of the corresponding positive electrodes. In the present study, a strategically improved Ni-Co-Mo sulfide is demonstrated to be a promising candidate for high energy density supercapattery devices due to its sustained pseudocapacitive charge storage mechanism. The pseudocapacitive behavior is enhanced when operating under a high current through the addition of a classical Schottky junction next to the electrode-electrolyte interface using atomic layer deposition. The Schottky junction accelerates and decelerates the diffusion of OH/K ions during the charging and discharging processes, respectively, to improve the pseudocapacitive behavior. The resulting pseudocapacitive negative electrodes exhibits a specific capacity of 2,114 C g at 2 A g matches almost that of the positive electrode's 2,795 C g at 3 A g. As a result, with the equivalent contribution from the positive and negative electrodes, an energy density of 236.1 Wh kg is achieved at a power density of 921.9 W kg with a total active mass of 15 mg cm. This strategy demonstrates the possibility of producing supercapacitors that adapt well to the supercapattery zone of a Ragone plot and that are equal to batteries in terms of energy density, thus, offering a route for further advances in electrochemical energy storage and conversion processes.
赝电容负极仍然是高能量密度超级电容器器件发展的主要瓶颈,因为负极的双电层电容与相应正极的赝电容不匹配。在本研究中,一种经过策略性改进的镍钴钼硫化物被证明是高能量密度超级电池器件的有前途的候选材料,这归因于其持续的赝电容电荷存储机制。当在高电流下运行时,通过使用原子层沉积在电极 - 电解质界面旁边添加经典肖特基结,赝电容行为得到增强。肖特基结在充电和放电过程中分别加速和减速OH/K离子的扩散,以改善赝电容行为。由此产生的赝电容负极在2 A g时表现出2114 C g的比容量,几乎与正极在3 A g时的2795 C g相匹配。结果,在正负极等效贡献的情况下,在功率密度为921.9 W kg且总活性质量为15 mg cm时,实现了236.1 Wh kg的能量密度。这种策略证明了生产能够很好地适应拉贡图超级电池区域且在能量密度方面与电池相当的超级电容器的可能性,从而为电化学能量存储和转换过程的进一步发展提供了一条途径。