Suppr超能文献

设计纳米异质结构镍掺杂硫化锡/氧化锡作为超级电容器的无粘结剂电极材料。

Designing nano-heterostructured nickel doped tin sulfide/tin oxide as binder free electrode material for supercapattery.

作者信息

Singh Davinder, Pershaanaa M, Farhana N K, Bashir Shahid, Ramesh K, Ramesh S

机构信息

Department of Physics, Faculty of Science, Centre for Ionics Universiti Malaya, Kuala Lumpur, 50603, Malaysia.

Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, Universiti Malaya, Jalan Pantai Baharu, Kuala Lumpur, 59990, Malaysia.

出版信息

BMC Chem. 2024 Oct 9;18(1):196. doi: 10.1186/s13065-024-01307-y.

Abstract

New generation of electrochemical energy storage devices (EESD) such as supercapattery is being intensively studied as it merges the ideal energy density of batteries and optimal power density of supercapacitors in a single device. A multitude of parameters such as the method of electrodes preparation can affect the performance of supercapattery. In this research, nickel doped tin sulfide /tin oxide (SnS@Ni/SnO) heterostructures were grown directly on the Ni foam and subjected to different calcination temperatures to study their effect on formation, properties, and electrochemical performance through X-ray diffraction (XRD), field emission scanning electron microscopy (FESEM), and electrochemical tests. The optimized SnS@Ni/SnO electrode achieved a maximum specific capacity of 319 C g while activated carbon based capacitive electrode exhibited maximum specific capacitance of 381.19 Fg. Besides, capacitive electrodes for the supercapattery were optimized by incorporating different conductive materials such as acetylene black (AB), carbon nanotubes (CNT) and graphene (GR). Assembling these optimized electrodes with the aid of charge balancing equation, the assembled supercapattery was able to achieve outstanding maximum energy density and power density of 36.04 Wh kg and 12.48 kW kg with capacity retention of 91% over 4,000 charge/discharge cycles.

摘要

新一代电化学储能装置(EESD),如超级电容电池,正受到深入研究,因为它在单个装置中融合了电池的理想能量密度和超级电容器的最佳功率密度。许多参数,如电极制备方法,会影响超级电容电池的性能。在本研究中,镍掺杂硫化锡/氧化锡(SnS@Ni/SnO)异质结构直接生长在泡沫镍上,并在不同煅烧温度下进行处理,以通过X射线衍射(XRD)、场发射扫描电子显微镜(FESEM)和电化学测试研究它们对形成、性能和电化学性能的影响。优化后的SnS@Ni/SnO电极实现了319 C/g的最大比容量,而基于活性炭的电容电极表现出381.19 F/g的最大比电容。此外,通过加入不同的导电材料,如乙炔黑(AB)、碳纳米管(CNT)和石墨烯(GR),对超级电容电池的电容电极进行了优化。借助电荷平衡方程组装这些优化电极,组装后的超级电容电池能够实现36.04 Wh/kg和12.48 kW/kg的出色最大能量密度和功率密度,在4000次充放电循环中容量保持率为91%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c804/11465700/02ceb7750942/13065_2024_1307_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验