School of Environment, Northeast Normal University, 2555 Jingyue Street, Changchun, 130117, P. R. China.
Small. 2023 Jun;19(24):e2208012. doi: 10.1002/smll.202208012. Epub 2023 Mar 10.
Acetamide- or formamide-assisted in situ strategy is designed to synthesize carbon atom self-doped g-C N (AHCN ) or nitrogen vacancy-modified g-C N (FHCN ). Different from the direct copolymerization route that suffers from the problem of mismatched physical properties of acetamide (or formamide) with urea, the synthesis of AHCN (or FHCN ) starts from a crucial preorganization step of acetamide (or formamide) with urea via freeze drying-hydrothermal treatment so that the chemical structures as well as C-doping level in AHCN and N-vacancy concentration in FHCN can be precisely regulated. By using various structural characterization methods, well-defined AHCN and FHCN structures are proposed. At the optimal C-doping level in AHCN or N-vacancy concentration in FHCN , both AHCN and FHCN exhibit remarkably improved visible-light photocatalytic performance in oxidation of emerging organic pollutants (acetaminophen and methylparaben) and reduction of proton to H in comparison of unmodified g-C N . Combination of the experimental results with theoretical calculations, it is confirmed that AHCN and FHCN show different charge separation and transfer mechanisms, while the enhanced visible-light harvesting capacity and the localized charge distributions on HOMO and LUMO are responsible for this excellent photocatalytic redox performance of AHCN and FHCN .
乙酰胺或甲酰胺辅助原位策略旨在合成碳原子自掺杂 g-CN(AHCN)或氮空位修饰 g-CN(FHCN)。与直接共聚路线不同,该路线存在乙酰胺(或甲酰胺)与尿素物理性质不匹配的问题,AHCN(或 FHCN)的合成起始于乙酰胺(或甲酰胺)与尿素通过冷冻干燥-水热处理的关键预组织步骤,从而可以精确调控 AHCN 中的化学结构和 C 掺杂水平以及 FHCN 中的 N 空位浓度。通过使用各种结构表征方法,提出了明确的 AHCN 和 FHCN 结构。在 AHCN 的最佳 C 掺杂水平或 FHCN 的 N 空位浓度下,与未改性的 g-CN 相比,AHCN 和 FHCN 在氧化新兴有机污染物(对乙酰氨基酚和甲基对苯二甲酸)和质子还原为 H 方面均表现出显著提高的可见光光催化性能。将实验结果与理论计算相结合,证实 AHCN 和 FHCN 表现出不同的电荷分离和转移机制,而增强的可见光捕获能力和 HOMO 和 LUMO 上的局域电荷分布是 AHCN 和 FHCN 具有优异光催化氧化还原性能的原因。