Yuan Lu, Ma Yuming, Liu Yihui
School of Computer Science and Technology, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China.
Math Biosci Eng. 2023 Jan;20(2):2203-2218. doi: 10.3934/mbe.2023102. Epub 2022 Nov 17.
As an important task in bioinformatics, protein secondary structure prediction (PSSP) is not only beneficial to protein function research and tertiary structure prediction, but also to promote the design and development of new drugs. However, current PSSP methods cannot sufficiently extract effective features. In this study, we propose a novel deep learning model WGACSTCN, which combines Wasserstein generative adversarial network with gradient penalty (WGAN-GP), convolutional block attention module (CBAM) and temporal convolutional network (TCN) for 3-state and 8-state PSSP. In the proposed model, the mutual game of generator and discriminator in WGAN-GP module can effectively extract protein features, and our CBAM-TCN local extraction module can capture key deep local interactions in protein sequences segmented by sliding window technique, and the CBAM-TCN long-range extraction module can further capture the key deep long-range interactions in sequences. We evaluate the performance of the proposed model on seven benchmark datasets. Experimental results show that our model exhibits better prediction performance compared to the four state-of-the-art models. The proposed model has strong feature extraction ability, which can extract important information more comprehensively.
作为生物信息学中的一项重要任务,蛋白质二级结构预测(PSSP)不仅有利于蛋白质功能研究和三级结构预测,还能促进新药的设计与开发。然而,当前的PSSP方法无法充分提取有效特征。在本研究中,我们提出了一种新颖的深度学习模型WGACSTCN,它将带梯度惩罚的瓦瑟斯坦生成对抗网络(WGAN-GP)、卷积块注意力模块(CBAM)和时间卷积网络(TCN)相结合,用于三状态和八状态的PSSP。在所提出的模型中,WGAN-GP模块中生成器和判别器的相互博弈能够有效提取蛋白质特征,我们的CBAM-TCN局部提取模块可以捕获通过滑动窗口技术分割的蛋白质序列中的关键深度局部相互作用,并且CBAM-TCN远程提取模块可以进一步捕获序列中的关键深度远程相互作用。我们在七个基准数据集上评估了所提出模型的性能。实验结果表明,与四个最先进的模型相比,我们的模型表现出更好的预测性能。所提出的模型具有很强的特征提取能力,能够更全面地提取重要信息。