Du Juan, Cheng Kuanhong, Yu Yue, Wang Dabao, Zhou Huixin
Xidian School of Physics and Optoelectronic Engineering, Xidian University, Xi'an 710071, China.
School of Computer Science and Engineering, Xi'an University of Technology, Xi'an 710048, China.
Sensors (Basel). 2021 Mar 19;21(6):2158. doi: 10.3390/s21062158.
Panchromatic (PAN) images contain abundant spatial information that is useful for earth observation, but always suffer from low-resolution ( LR) due to the sensor limitation and large-scale view field. The current super-resolution (SR) methods based on traditional attention mechanism have shown remarkable advantages but remain imperfect to reconstruct the edge details of SR images. To address this problem, an improved SR model which involves the self-attention augmented Wasserstein generative adversarial network ( SAA-WGAN) is designed to dig out the reference information among multiple features for detail enhancement. We use an encoder-decoder network followed by a fully convolutional network (FCN) as the backbone to extract multi-scale features and reconstruct the High-resolution (HR) results. To exploit the relevance between multi-layer feature maps, we first integrate a convolutional block attention module (CBAM) into each skip-connection of the encoder-decoder subnet, generating weighted maps to enhance both channel-wise and spatial-wise feature representation automatically. Besides, considering that the HR results and LR inputs are highly similar in structure, yet cannot be fully reflected in traditional attention mechanism, we, therefore, designed a self augmented attention (SAA) module, where the attention weights are produced dynamically via a similarity function between hidden features; this design allows the network to flexibly adjust the fraction relevance among multi-layer features and keep the long-range inter information, which is helpful to preserve details. In addition, the pixel-wise loss is combined with perceptual and gradient loss to achieve comprehensive supervision. Experiments on benchmark datasets demonstrate that the proposed method outperforms other SR methods in terms of both objective evaluation and visual effect.
全色(PAN)图像包含丰富的空间信息,对地球观测很有用,但由于传感器限制和大视场,总是存在低分辨率(LR)问题。当前基于传统注意力机制的超分辨率(SR)方法已显示出显著优势,但在重建SR图像的边缘细节方面仍不完善。为了解决这个问题,设计了一种改进的SR模型,该模型涉及自注意力增强的瓦瑟斯坦生成对抗网络(SAA-WGAN),以挖掘多个特征之间的参考信息以进行细节增强。我们使用一个编码器-解码器网络,其后接一个全卷积网络(FCN)作为主干,以提取多尺度特征并重建高分辨率(HR)结果。为了利用多层特征图之间的相关性,我们首先将卷积块注意力模块(CBAM)集成到编码器-解码器子网的每个跳跃连接中,生成加权图以自动增强通道级和空间级特征表示。此外,考虑到HR结果和LR输入在结构上高度相似,但在传统注意力机制中不能完全体现,因此,我们设计了一个自增强注意力(SAA)模块,其中注意力权重通过隐藏特征之间的相似性函数动态生成;这种设计使网络能够灵活调整多层特征之间的分数相关性并保持长距离交互信息,这有助于保留细节。此外,将逐像素损失与感知损失和梯度损失相结合,以实现全面监督。在基准数据集上的实验表明,该方法在客观评估和视觉效果方面均优于其他SR方法。