School of Mathematics and Statistics, Wuhan University, Wuhan 430072, China.
Hubei Key Laboratory of Computational Science, Wuhan University, Wuhan 430072, China.
Math Biosci Eng. 2023 Jan;20(2):2890-2907. doi: 10.3934/mbe.2023136. Epub 2022 Dec 1.
Radiomics, providing quantitative data extracted from medical images, has emerged as a critical role in diagnosis and classification of diseases such as glioma. One main challenge is how to uncover key disease-relevant features from the large amount of extracted quantitative features. Many existing methods suffer from low accuracy or overfitting. We propose a new method, Multiple-Filter and Multi-Objective-based method (MFMO), to identify predictive and robust biomarkers for disease diagnosis and classification. This method combines a multi-filter feature extraction with a multi-objective optimization-based feature selection model, which identifies a small set of predictive radiomic biomarkers with less redundancy. Taking magnetic resonance imaging (MRI) images-based glioma grading as a case study, we identify 10 key radiomic biomarkers that can accurately distinguish low-grade glioma (LGG) from high-grade glioma (HGG) on both training and test datasets. Using these 10 signature features, the classification model reaches training Area Under the receiving operating characteristic Curve (AUC) of 0.96 and test AUC of 0.95, which shows superior performance over existing methods and previously identified biomarkers.
放射组学提供了从医学图像中提取的定量数据,在胶质瘤等疾病的诊断和分类中发挥了关键作用。一个主要的挑战是如何从大量提取的定量特征中发现关键的与疾病相关的特征。许多现有的方法存在准确性低或过拟合的问题。我们提出了一种新的方法,即基于多滤波器和多目标的方法(MFMO),以识别用于疾病诊断和分类的预测性和稳健的生物标志物。该方法结合了多滤波器特征提取和基于多目标优化的特征选择模型,可以识别出一组具有较少冗余的预测性放射组学生物标志物。以磁共振成像(MRI)图像为基础的胶质瘤分级为例,我们确定了 10 个关键的放射组学生物标志物,这些生物标志物可以在训练和测试数据集上准确地区分低级别胶质瘤(LGG)和高级别胶质瘤(HGG)。使用这 10 个特征,分类模型在训练和测试数据集上的接收者操作特征曲线(AUC)下的面积分别为 0.96 和 0.95,优于现有的方法和以前确定的生物标志物。