Suppr超能文献

脑胶质瘤的多参数磁共振影像组学:用于预测生物标志物状态的模型比较。

Multiparametric MR radiomics in brain glioma: models comparation to predict biomarker status.

机构信息

Graduate School, Tianjin Medical University, Tianjin, 300070, China.

Department of Imaging Diagnosis, Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010000, China.

出版信息

BMC Med Imaging. 2022 Aug 5;22(1):137. doi: 10.1186/s12880-022-00865-8.

Abstract

BACKGROUND

Genotype status of glioma have important significance to clinical treatment and prognosis. At present, there are few studies on the prediction of multiple genotype status in glioma by method of multi-sequence radiomics. The purpose of the study is to compare the performance of clinical features (age, sex, WHO grade, MRI morphological features etc.), radiomics features from multi MR sequence (T2WI, T1WI, DWI, ADC, CE-MRI (contrast enhancement)), and a combined multiple features model in predicting biomarker status (IDH, MGMT, TERT, 1p/19q of glioma.

METHODS

In this retrospective analysis, 81 glioma patients confirmed by histology were enrolled in this study. Five MRI sequences were used for radiomic feature extraction. Finally, 107 features were extracted from each sequence on Pyradiomics software, separately. These included 18 first-order metrics, such as the mean, standard deviation, skewness, and kurtosis etc., 14 shape features and second-order metrics including 24 grey level run length matrix (GLCM), 16 grey level run length matrix (GLRLM), 16 grey level size zone matrix (GLSZM), 5 neighboring gray tone difference matrix (NGTDM), and 14 grey level dependence matrix (GLDM). Then, Univariate analysis and LASSO (Least absolute shrinkage and selection operator regression model were used to data dimension reduction, feature selection, and radiomics signature building. Significant features (p < 0.05 by multivariate logistic regression were retained to establish clinical model, T1WI model, T2WI model, T1 + C (T1WI contrast enhancement model, DWI model and ADC model, multi sequence model. Clinical features were combined with multi sequence model to establish a combined model. The predictive performance was validated by receiver operating characteristic curve (ROC analysis and decision curve analysis (DCA).

RESULTS

The combined model showed the better performance in some groups of genotype status among some models (IDH AUC = 0.93, MGMT AUC = 0.88, TERT AUC = 0.76). Multi sequence model performed better than single sequence model in IDH, MGMT, TERT. There was no significant difference among the models in predicting 1p/19q status. Decision curve analysis showed combined model has higher clinical benefit than multi sequence model.

CONCLUSION

Multi sequence model is an effective method to identify the genotype status of cerebral glioma. Combined with clinical models can better distinguish genotype status of glioma.

KEY POINTS

The combined model showed the higher performance compare with other models in predicting genotype status of IDH, MGMT, TERT. Multi sequence model showed a better predictive model than that of a single sequence model. Compared with other models, the combined model and multi sequence model show no advantage in prediction of 1p/19q status.

摘要

背景

胶质瘤的基因型状态对临床治疗和预后具有重要意义。目前,很少有研究采用多序列放射组学方法预测胶质瘤的多种基因型状态。本研究旨在比较临床特征(年龄、性别、世界卫生组织分级、MRI 形态特征等)、多 MR 序列(T2WI、T1WI、DWI、ADC、CE-MRI(对比增强))的放射组学特征以及多序列联合特征模型在预测生物标志物状态(IDH、MGMT、TERT、1p/19q)中的性能。

方法

在这项回顾性分析中,纳入了 81 名经组织学证实的胶质瘤患者。对 5 个 MRI 序列进行放射组学特征提取。最后,在 Pyradiomics 软件上分别从每个序列中提取 107 个特征,包括 18 个一阶指标,如平均值、标准差、偏度和峰度等,14 个形状特征和二阶指标,包括 24 个灰度游程长度矩阵(GLCM)、16 个灰度游程长度矩阵(GLRLM)、16 个灰度大小区域矩阵(GLSZM)、5 个邻域灰度差矩阵(NGTDM)和 14 个灰度依赖矩阵(GLDM)。然后,采用单变量分析和 LASSO(最小绝对值收缩和选择算子回归模型)进行数据降维、特征选择和放射组学特征构建。通过多变量逻辑回归保留具有统计学意义的特征(p<0.05),建立临床模型、T1WI 模型、T2WI 模型、T1+C(T1WI 增强模型、DWI 模型和 ADC 模型、多序列模型。将临床特征与多序列模型相结合,建立联合模型。通过受试者工作特征曲线(ROC)分析和决策曲线分析(DCA)验证预测性能。

结果

在某些基因型状态的组别中,联合模型在某些模型(IDH AUC=0.93、MGMT AUC=0.88、TERT AUC=0.76)中表现出更好的性能。多序列模型在 IDH、MGMT、TERT 预测方面优于单序列模型。各模型在预测 1p/19q 状态方面无显著差异。决策曲线分析表明,联合模型比多序列模型具有更高的临床获益。

结论

多序列模型是一种有效的识别脑胶质瘤基因型状态的方法。结合临床模型可以更好地区分胶质瘤的基因型状态。

要点

联合模型在预测 IDH、MGMT、TERT 基因型状态方面表现优于其他模型。多序列模型较单序列模型具有更好的预测模型。与其他模型相比,联合模型和多序列模型在预测 1p/19q 状态方面没有优势。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/48b3/9354364/d503e87bb17e/12880_2022_865_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验