Suppr超能文献

基于深度学习分割技术在T1加权磁共振图像上预测皮质脊髓束的拓扑结构

Prediction of the Topography of the Corticospinal Tract on T1-Weighted MR Images Using Deep-Learning-Based Segmentation.

作者信息

Barany Laszlo, Hore Nirjhar, Stadlbauer Andreas, Buchfelder Michael, Brandner Sebastian

机构信息

Department of Neurosurgery, University Hospital Erlangen, Schwabachanlage 6, 91054 Erlangen, Germany.

出版信息

Diagnostics (Basel). 2023 Feb 28;13(5):911. doi: 10.3390/diagnostics13050911.

Abstract

INTRODUCTION

Tractography is an invaluable tool in the planning of tumor surgery in the vicinity of functionally eloquent areas of the brain as well as in the research of normal development or of various diseases. The aim of our study was to compare the performance of a deep-learning-based image segmentation for the prediction of the topography of white matter tracts on T1-weighted MR images to the performance of a manual segmentation.

METHODS

T1-weighted MR images of 190 healthy subjects from 6 different datasets were utilized in this study. Using deterministic diffusion tensor imaging, we first reconstructed the corticospinal tract on both sides. After training a segmentation model on 90 subjects of the PIOP2 dataset using the nnU-Net in a cloud-based environment with graphical processing unit (Google Colab), we evaluated its performance using 100 subjects from 6 different datasets.

RESULTS

Our algorithm created a segmentation model that predicted the topography of the corticospinal pathway on T1-weighted images in healthy subjects. The average dice score was 0.5479 (0.3513-0.7184) on the validation dataset.

CONCLUSIONS

Deep-learning-based segmentation could be applicable in the future to predict the location of white matter pathways in T1-weighted scans.

摘要

引言

纤维束成像在脑功能明确区域附近的肿瘤手术规划以及正常发育或各种疾病的研究中是一种非常有价值的工具。我们研究的目的是比较基于深度学习的图像分割在T1加权磁共振图像上预测白质纤维束拓扑结构的性能与手动分割的性能。

方法

本研究使用了来自6个不同数据集的190名健康受试者的T1加权磁共振图像。使用确定性扩散张量成像,我们首先重建了双侧皮质脊髓束。在基于云的具有图形处理单元的环境(谷歌Colab)中使用nnU-Net在PIOP2数据集的90名受试者上训练分割模型后,我们使用来自6个不同数据集的100名受试者评估了其性能。

结果

我们的算法创建了一个分割模型,该模型可预测健康受试者T1加权图像上皮质脊髓通路的拓扑结构。验证数据集上的平均骰子系数为0.5479(0.3513 - 0.7184)。

结论

基于深度学习的分割未来可能适用于预测T1加权扫描中白质通路的位置。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7dd8/10000710/1f695e4b9660/diagnostics-13-00911-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验