Suppr超能文献

基于深度学习的 3D T1 加权容积图像阿尔茨海默病自动脑分割与分类算法的建立与验证。

Development and Validation of a Deep Learning-Based Automatic Brain Segmentation and Classification Algorithm for Alzheimer Disease Using 3D T1-Weighted Volumetric Images.

机构信息

From the Department of Radiology and Research Institute of Radiology (C.H.S., W.H.S., S.J.K.).

From the Department of Radiology and Research Institute of Radiology (C.H.S., W.H.S., S.J.K.)

出版信息

AJNR Am J Neuroradiol. 2020 Dec;41(12):2227-2234. doi: 10.3174/ajnr.A6848. Epub 2020 Nov 5.

Abstract

BACKGROUND AND PURPOSE

Limited evidence has suggested that a deep learning automatic brain segmentation and classification method, based on T1-weighted brain MR images, can predict Alzheimer disease. Our aim was to develop and validate a deep learning-based automatic brain segmentation and classification algorithm for the diagnosis of Alzheimer disease using 3D T1-weighted brain MR images.

MATERIALS AND METHODS

A deep learning-based algorithm was developed using a dataset of T1-weighted brain MR images in consecutive patients with Alzheimer disease and mild cognitive impairment. We developed a 2-step algorithm using a convolutional neural network to perform brain parcellation followed by 3 classifier techniques including XGBoost for disease prediction. All classification experiments were performed using 5-fold cross-validation. The diagnostic performance of the XGBoost method was compared with logistic regression and a linear Support Vector Machine by calculating their areas under the curve for differentiating Alzheimer disease from mild cognitive impairment and mild cognitive impairment from healthy controls.

RESULTS

In a total of 4 datasets, 1099, 212, 711, and 705 eligible patients were included. Compared with the linear Support Vector Machine and logistic regression, XGBoost significantly improved the prediction of Alzheimer disease (< .001). In terms of differentiating Alzheimer disease from mild cognitive impairment, the 3 algorithms resulted in areas under the curve of 0.758-0.825. XGBoost had a sensitivity of 68% and a specificity of 70%. In terms of differentiating mild cognitive impairment from the healthy control group, the 3 algorithms resulted in areas under the curve of 0.668-0.870. XGBoost had a sensitivity of 79% and a specificity of 80%.

CONCLUSIONS

The deep learning-based automatic brain segmentation and classification algorithm allowed an accurate diagnosis of Alzheimer disease using T1-weighted brain MR images. The widespread availability of T1-weighted brain MR imaging suggests that this algorithm is a promising and widely applicable method for predicting Alzheimer disease.

摘要

背景与目的

有有限的证据表明,基于 T1 加权脑磁共振成像的深度学习自动脑分割和分类方法可预测阿尔茨海默病。我们的目的是开发和验证一种基于深度学习的自动脑分割和分类算法,用于使用 3D T1 加权脑磁共振成像诊断阿尔茨海默病。

材料与方法

我们使用连续阿尔茨海默病和轻度认知障碍患者的 T1 加权脑磁共振成像数据集开发了一种基于深度学习的算法。我们使用卷积神经网络开发了一个 2 步算法,用于进行脑分割,然后使用 3 种分类器技术(包括 XGBoost)进行疾病预测。所有分类实验均采用 5 折交叉验证进行。通过计算区分阿尔茨海默病与轻度认知障碍、轻度认知障碍与健康对照的曲线下面积,比较 XGBoost 方法与逻辑回归和线性支持向量机的诊断性能。

结果

在总共 4 个数据集中,纳入了 1099、212、711 和 705 例符合条件的患者。与线性支持向量机和逻辑回归相比,XGBoost 显著提高了阿尔茨海默病的预测能力(<.001)。在区分阿尔茨海默病与轻度认知障碍方面,这 3 种算法的曲线下面积为 0.758-0.825。XGBoost 的灵敏度为 68%,特异性为 70%。在区分轻度认知障碍与健康对照组方面,这 3 种算法的曲线下面积为 0.668-0.870。XGBoost 的灵敏度为 79%,特异性为 80%。

结论

基于深度学习的自动脑分割和分类算法可使用 T1 加权脑磁共振成像准确诊断阿尔茨海默病。T1 加权脑磁共振成像广泛应用,提示该算法是一种有前途且广泛适用的预测阿尔茨海默病的方法。

相似文献

3
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14.
4
A multi-model deep convolutional neural network for automatic hippocampus segmentation and classification in Alzheimer's disease.
Neuroimage. 2020 Mar;208:116459. doi: 10.1016/j.neuroimage.2019.116459. Epub 2019 Dec 16.
6
7
A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using F-FDG PET of the Brain.
Radiology. 2019 Feb;290(2):456-464. doi: 10.1148/radiol.2018180958. Epub 2018 Nov 6.
9
Fully Automated Hippocampus Segmentation using T2-informed Deep Convolutional Neural Networks.
Neuroimage. 2024 Sep;298:120767. doi: 10.1016/j.neuroimage.2024.120767. Epub 2024 Aug 3.
10
Alzheimer's disease diagnosis from diffusion tensor images using convolutional neural networks.
PLoS One. 2020 Mar 24;15(3):e0230409. doi: 10.1371/journal.pone.0230409. eCollection 2020.

引用本文的文献

4
MRI radiomics combined with machine learning for diagnosing mild cognitive impairment: a focus on the cerebellar gray and white matter.
Front Aging Neurosci. 2024 Oct 4;16:1460293. doi: 10.3389/fnagi.2024.1460293. eCollection 2024.
5
Reliability of brain volume measures of accelerated 3D T1-weighted images with deep learning-based reconstruction.
Neuroradiology. 2025 Jan;67(1):171-182. doi: 10.1007/s00234-024-03461-5. Epub 2024 Sep 24.
6
Automated brain segmentation and volumetry in dementia diagnostics: a narrative review with emphasis on FreeSurfer.
Front Aging Neurosci. 2024 Sep 3;16:1459652. doi: 10.3389/fnagi.2024.1459652. eCollection 2024.
7
Revolutionizing early Alzheimer's disease and mild cognitive impairment diagnosis: a deep learning MRI meta-analysis.
Arq Neuropsiquiatr. 2024 Aug;82(8):1-10. doi: 10.1055/s-0044-1788657. Epub 2024 Aug 15.
9
Automatic detection of mild cognitive impairment based on deep learning and radiomics of MR imaging.
Front Med (Lausanne). 2024 Jan 12;11:1305565. doi: 10.3389/fmed.2024.1305565. eCollection 2024.

本文引用的文献

2
A parameter-efficient deep learning approach to predict conversion from mild cognitive impairment to Alzheimer's disease.
Neuroimage. 2019 Apr 1;189:276-287. doi: 10.1016/j.neuroimage.2019.01.031. Epub 2019 Jan 14.
4
A Deep Learning Model to Predict a Diagnosis of Alzheimer Disease by Using F-FDG PET of the Brain.
Radiology. 2019 Feb;290(2):456-464. doi: 10.1148/radiol.2018180958. Epub 2018 Nov 6.
5
NIA-AA Research Framework: Toward a biological definition of Alzheimer's disease.
Alzheimers Dement. 2018 Apr;14(4):535-562. doi: 10.1016/j.jalz.2018.02.018.
10
Reduced Pineal Volume in Alzheimer Disease: A Retrospective Cross-sectional MR Imaging Study.
Radiology. 2018 Jan;286(1):239-248. doi: 10.1148/radiol.2017170188. Epub 2017 Jul 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验