Suppr超能文献

视网膜疾病治疗方法优化的模型与算法

Models and Algorithms for the Refinement of Therapeutic Approaches for Retinal Diseases.

作者信息

Friedmann Elfriede, Dörsam Simon, Auffarth Gerd U

机构信息

Institute of Mathematics, Kassel University, Heinrich-Plett-Straße 40, 34132 Kassel, Germany.

Department of Ophthalmology, David J. Apple International Laboratory for Ocular Pathology, Heidelberg University, 69120 Heidelberg, Germany.

出版信息

Diagnostics (Basel). 2023 Mar 3;13(5):975. doi: 10.3390/diagnostics13050975.

Abstract

We are developing a Virtual Eye for in silico therapies to accelerate research and drug development. In this paper, we present a model for drug distribution in the vitreous body that enables personalized therapy in ophthalmology. The standard treatment for age-related macular degeneration is anti-vascular endothelial growth factor (VEGF) drugs administered by repeated injections. The treatment is risky, unpopular with patients, and some of them are unresponsive with no alternative treatment. Much attention is paid to the efficacy of these drugs, and many efforts are being made to improve them. We are designing a mathematical model and performing long-term three-dimensional Finite Element simulations for drug distribution in the human eye to gain new insights in the underlying processes using computational experiments. The underlying model consists of a time-dependent convection-diffusion equation for the drug coupled with a steady-state Darcy equation describing the flow of aqueous humor through the vitreous medium. The influence of collagen fibers in the vitreous on drug distribution is included by anisotropic diffusion and the gravity via an additional transport term. The resulting coupled model was solved in a decoupled way: first the Darcy equation with mixed finite elements, then the convection-diffusion equation with trilinear Lagrange elements. Krylov subspace methods are used to solve the resulting algebraic system. To cope with the large time steps resulting from the simulations over 30 days (operation time of 1 anti-VEGF injection), we apply the strong A-stable fractional step theta scheme. Using this strategy, we compute a good approximation to the solution that converges quadratically in both time and space. The developed simulations were used for the therapy optimization, for which specific output functionals are evaluated. We show that the effect of gravity on drug distribution is negligible, that the optimal pair of injection angles is (50∘,50∘), that larger angles can result in 38% less drug at the macula, and that in the best case only 40% of the drug reaches the macula while the rest escapes, e.g., through the retina, that by using heavier drug molecules, more of the drug concentration reaches the macula in an average of 30 days. As a refined therapy, we have found that for longer-acting drugs, the injection should be made in the center of the vitreous, and for more intensive initial treatment, the drug should be injected even closer to the macula. In this way, we can perform accurate and efficient treatment testing, calculate the optimal injection position, perform drug comparison, and quantify the effectiveness of the therapy using the developed functionals. We describe the first steps towards virtual exploration and improvement of therapy for retinal diseases such as age-related macular degeneration.

摘要

我们正在开发一种用于计算机模拟治疗的虚拟眼,以加速研究和药物开发。在本文中,我们提出了一种玻璃体中药物分布的模型,该模型能够实现眼科的个性化治疗。年龄相关性黄斑变性的标准治疗方法是通过反复注射给予抗血管内皮生长因子(VEGF)药物。这种治疗有风险,患者不太接受,而且有些患者无反应且没有替代治疗方法。人们非常关注这些药物的疗效,并正在做出许多努力来改进它们。我们正在设计一个数学模型,并对人眼内的药物分布进行长期三维有限元模拟,以通过计算实验深入了解潜在过程。基础模型由一个与药物相关的时间相关对流扩散方程和一个描述房水通过玻璃体介质流动的稳态达西方程组成。玻璃体中胶原纤维对药物分布的影响通过各向异性扩散和通过一个附加传输项考虑重力来体现。所得的耦合模型以解耦方式求解:首先用混合有限元求解达西方程,然后用三线性拉格朗日元求解对流扩散方程。使用 Krylov 子空间方法求解所得的代数系统。为了应对超过 30 天模拟(1 次抗 VEGF 注射的操作时间)产生的大时间步长,我们应用强 A 稳定分数步 theta 格式。使用这种策略,我们计算出了在时间和空间上都二次收敛的解的良好近似。所开发的模拟用于治疗优化,为此评估特定的输出泛函。我们表明重力对药物分布的影响可以忽略不计,最佳注射角度对为(50°,50°),更大的角度可导致黄斑处的药物减少 38%,并且在最佳情况下只有 40%的药物到达黄斑,其余的则逸出,例如通过视网膜,通过使用较重的药物分子,平均 30 天内更多的药物浓度到达黄斑。作为一种改进的治疗方法,我们发现对于长效药物,应在玻璃体中心进行注射,而对于更强化的初始治疗,药物应注射得更靠近黄斑。通过这种方式,我们可以进行准确高效的治疗测试,计算最佳注射位置,进行药物比较,并使用所开发的泛函量化治疗效果。我们描述了迈向虚拟探索和改善诸如年龄相关性黄斑变性等视网膜疾病治疗的第一步。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/52e4/10001150/ca25555cc24b/diagnostics-13-00975-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验