Suppr超能文献

通过生存分析筛选差异基因表达模式,用于透明细胞肾细胞癌的诊断、预后和治疗。

Screening of differential gene expression patterns through survival analysis for diagnosis, prognosis and therapies of clear cell renal cell carcinoma.

机构信息

Department of Statistics, Bioinformatics Lab (Dry), University of Rajshahi, Rajshahi, Bangladesh.

Department of Agricultural and Applied Statistics, Bangladesh Agricultural University, Mymensingh, Bangladesh.

出版信息

PLoS One. 2024 Sep 30;19(9):e0310843. doi: 10.1371/journal.pone.0310843. eCollection 2024.

Abstract

Clear cell renal cell carcinoma (ccRCC) is the most prevalent subtype of kidney cancer. Although there is increasing evidence linking ccRCC to genetic alterations, the exact molecular mechanism behind this relationship is not yet completely known to the researchers. Though drug therapies are the best choice after the metastasis, unfortunately, the majority of the patients progressively develop resistance against the therapeutic drugs after receiving it for almost 2 years. In this case, multi-targeted different variants of therapeutic drugs are essential for effective treatment against ccRCC. To understand molecular mechanisms of ccRCC development and progression, and explore multi-targeted different variants of therapeutic drugs, it is essential to identify ccRCC-causing key genes (KGs). In order to obtain ccRCC-causing KGs, at first, we detected 133 common differentially expressed genes (cDEGs) between ccRCC and control samples based on nine (9) microarray gene-expression datasets with NCBI accession IDs GSE16441, GSE53757, GSE66270, GSE66272, GSE16449, GSE76351, GSE66271, GSE71963, and GSE36895. Then, we filtered these cDEGs through survival analysis with the independent TCGA and GTEx database and obtained 54 scDEGs having significant prognostic power. Next, we used protein-protein interaction (PPI) network analysis with the reduced set of 54 scDEGs to identify ccRCC-causing top-ranked eight KGs (PLG, ENO2, ALDOB, UMOD, ALDH6A1, SLC12A3, SLC12A1, SERPINA5). The pan-cancer analysis with KGs based on TCGA database showed the significant association with different subtypes of kidney cancers including ccRCC. The gene regulatory network (GRN) analysis revealed some crucial transcriptional and post-transcriptional regulators of KGs. The scDEGs-set enrichment analysis significantly identified some crucial ccRCC-causing molecular functions, biological processes, cellular components, and pathways that are linked to the KGs. The results of DNA methylation study indicated the hypomethylation and hyper-methylation of KGs, which may lead the development of ccRCC. The immune infiltrating cell types (CD8+ T and CD4+ T cell, B cell, neutrophil, dendritic cell and macrophage) analysis with KGs indicated their significant association in ccRCC, where KGs are positively correlated with CD4+ T cells, but negatively correlated with the majority of other immune cells, which is supported by the literature review also. Then we detected 10 repurposable drug molecules (Irinotecan, Imatinib, Telaglenastat, Olaparib, RG-4733, Sorafenib, Sitravatinib, Cabozantinib, Abemaciclib, and Dovitinib.) by molecular docking with KGs-mediated receptor proteins. Their ADME/T analysis and cross-validation with the independent receptors, also supported their potent against ccRCC. Therefore, these outputs might be useful inputs/resources to the wet-lab researchers and clinicians for considering an effective treatment strategy against ccRCC.

摘要

透明细胞肾细胞癌 (ccRCC) 是最常见的肾癌亚型。尽管越来越多的证据表明 ccRCC 与遗传改变有关,但研究人员尚未完全了解这种关系的确切分子机制。尽管药物治疗是转移后的最佳选择,但不幸的是,大多数患者在接受治疗近 2 年后,会逐渐对治疗药物产生耐药性。在这种情况下,针对 ccRCC 的多靶点不同变体的治疗药物对于有效治疗至关重要。为了了解 ccRCC 的发展和进展的分子机制,并探索针对 ccRCC 的多靶点不同变体的治疗药物,识别 ccRCC 致病关键基因 (KGs) 至关重要。为了获得 ccRCC 致病 KGs,首先,我们基于 NCBI 访问号 GSE16441、GSE53757、GSE66270、GSE66272、GSE16449、GSE76351、GSE66271、GSE71963 和 GSE36895 的九个 (9) 微阵列基因表达数据集,检测了 ccRCC 和对照样本之间的 133 个常见差异表达基因 (cDEGs)。然后,我们通过使用独立的 TCGA 和 GTEx 数据库进行生存分析来筛选这些 cDEGs,并获得了具有显著预后能力的 54 个 scDEGs。接下来,我们使用蛋白质-蛋白质相互作用 (PPI) 网络分析,使用减少的 54 个 scDEGs 集来识别 ccRCC 致病的前 8 个顶级 KGs(PLG、ENO2、ALDOB、UMOD、ALDH6A1、SLC12A3、SLC12A1、SERPINA5)。基于 TCGA 数据库的泛癌分析显示,与包括 ccRCC 在内的不同亚型肾癌有显著关联。基因调控网络 (GRN) 分析揭示了 KGs 的一些关键转录和转录后调节因子。scDEGs 集富集分析显著确定了与 KGs 相关的一些关键 ccRCC 致病分子功能、生物学过程、细胞成分和途径。DNA 甲基化研究的结果表明 KGs 的低甲基化和高甲基化,这可能导致 ccRCC 的发生。与 KGs 相关的免疫浸润细胞类型 (CD8+T 和 CD4+T 细胞、B 细胞、中性粒细胞、树突状细胞和巨噬细胞) 分析表明它们在 ccRCC 中存在显著关联,其中 KGs 与 CD4+T 细胞呈正相关,但与大多数其他免疫细胞呈负相关,这也得到了文献综述的支持。然后,我们通过与 KGs 介导的受体蛋白进行分子对接,检测了 10 种可再利用的药物分子(伊立替康、伊马替尼、Telaglenastat、奥拉帕利、RG-4733、索拉非尼、Sitravatinib、卡博替尼、阿贝西利和多韦替尼)。它们的 ADME/T 分析和与独立受体的交叉验证也支持它们对 ccRCC 的有效作用。因此,这些结果可能是湿实验室研究人员和临床医生在考虑针对 ccRCC 的有效治疗策略时有用的输入/资源。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/8c31/11441673/3bb3667afe77/pone.0310843.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验