Suppr超能文献

基于MRI的影像组学和尿肌酐对含极少脂肪的肾血管平滑肌脂肪瘤与肾细胞癌的鉴别诊断:一项初步研究

MRI-Based Radiomics and Urine Creatinine for the Differentiation of Renal Angiomyolipoma With Minimal Fat From Renal Cell Carcinoma: A Preliminary Study.

作者信息

Jian Lian, Liu Yan, Xie Yu, Jiang Shusuan, Ye Mingji, Lin Huashan

机构信息

Department of Radiology, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.

Department of Urological Surgery, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China.

出版信息

Front Oncol. 2022 May 26;12:876664. doi: 10.3389/fonc.2022.876664. eCollection 2022.

Abstract

OBJECTIVES

Standard magnetic resonance imaging (MRI) techniques are different to distinguish minimal fat angiomyolipoma (mf-AML) with minimal fat from renal cell carcinoma (RCC). Here we aimed to evaluate the diagnostic performance of MRI-based radiomics in the differentiation of fat-poor AMLs from other renal neoplasms.

METHODS

A total of 69 patients with solid renal tumors without macroscopic fat and with a pathologic diagnosis of RCC (n=50) or mf-AML (n=19) who underwent conventional MRI and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) were included. Clinical data including age, sex, tumor location, urine creatinine, and urea nitrogen were collected from medical records. The apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction () were measured from renal tumors. We used the ITK-SNAP software to manually delineate the regions of interest on T2-weighted imaging (T2WI) and IVIM-DWI from the largest cross-sectional area of the tumor. We extracted 396 radiomics features by the Analysis Kit software for each MR sequence. The hand-crafted features were selected by using the Pearson correlation analysis and least absolute shrinkage and selection operator (LASSO). Diagnostic models were built by logistic regression analysis. Receiver operating characteristic curve analysis was performed using five-fold cross-validation and the mean area under the curve (AUC) values were calculated and compared between the models to obtain the optimal model for the differentiation of mf-AML and RCC. Decision curve analysis (DCA) was used to evaluate the clinical utility of the models.

RESULTS

Clinical model based on urine creatinine achieved an AUC of 0.802 (95%CI: 0.761-0.843). IVIM-based model based on value achieved an AUC of 0.692 (95%CI: 0.627-0.757). T2WI-radiomics model achieved an AUC of 0.883 (95%CI: 0.852-0.914). IVIM-radiomics model achieved an AUC of 0.874 (95%CI: 0.841-0.907). Combined radiomics model achieved an AUC of 0.919 (95%CI: 0.894-0.944). Clinical-radiomics model yielded the best performance, with an AUC of 0.931 (95%CI: 0.907-0.955). The calibration curve and DCA confirmed that the clinical-radiomics model had a good consistency and clinical usefulness.

CONCLUSION

The clinical-radiomics model may be served as a noninvasive diagnostic tool to differentiate mf-AML with RCC, which might facilitate the clinical decision-making process.

摘要

目的

标准磁共振成像(MRI)技术难以区分含少量脂肪的血管平滑肌脂肪瘤(mf-AML)和肾细胞癌(RCC)。本研究旨在评估基于MRI的影像组学在鉴别乏脂AML与其他肾肿瘤中的诊断性能。

方法

纳入69例实性肾肿瘤患者,这些患者均未发现肉眼可见脂肪,且经病理诊断为RCC(n = 50)或mf-AML(n = 19),均接受了传统MRI和体素内不相干运动扩散加权成像(IVIM-DWI)检查。从病历中收集包括年龄、性别、肿瘤位置、尿肌酐和尿素氮在内的临床数据。测量肾肿瘤的表观扩散系数(ADC)、纯扩散系数(D)、伪扩散系数(D*)和灌注分数()。我们使用ITK-SNAP软件在肿瘤最大横截面积的T2加权成像(T2WI)和IVIM-DWI上手动勾画感兴趣区域。通过Analysis Kit软件为每个MR序列提取396个影像组学特征。通过Pearson相关分析和最小绝对收缩和选择算子(LASSO)选择手工特征。通过逻辑回归分析建立诊断模型。使用五折交叉验证进行受试者操作特征曲线分析,并计算模型之间的平均曲线下面积(AUC)值并进行比较,以获得鉴别mf-AML和RCC的最佳模型。使用决策曲线分析(DCA)评估模型的临床实用性。

结果

基于尿肌酐的临床模型AUC为0.802(95%CI:0.761 - 0.843)。基于值的IVIM模型AUC为0.692(95%CI:0.627 - 0.757)。T2WI影像组学模型AUC为0.883(95%CI:0.852 - 0.914)。IVIM影像组学模型AUC为0.874(95%CI:0.841 - 0.907)。联合影像组学模型AUC为0.919(95%CI:0.894 - 0.944)。临床-影像组学模型表现最佳,AUC为0.931(95%CI:0.907 - 0.955)。校准曲线和DCA证实临床-影像组学模型具有良好的一致性和临床实用性。

结论

临床-影像组学模型可作为鉴别mf-AML与RCC的无创诊断工具,可能有助于临床决策过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6b3e/9204342/0863f088f229/fonc-12-876664-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验