Wei Xiongliang, Al Muyeed Syed Ahmed, Xue Haotian, Wierer Jonathan J
Center for Photonics and Nanoelectronics, Department of Electrical and Computer Engineering, Lehigh University, Bethlehem, PA 18015, USA.
Department of Electrical and Computer Engineering, North Carolina State University, Raleigh, NC 27695, USA.
Materials (Basel). 2023 Feb 24;16(5):1890. doi: 10.3390/ma16051890.
Traditional methods for synthesizing InGaN quantum dots (QDs), such as the Stranski-Krastanov growth, often result in QD ensembles with low density and non-uniform size distribution. To overcome these challenges, forming QDs using photoelectrochemical (PEC) etching with coherent light has been developed. Anisotropic etching of InGaN thin films is demonstrated here with PEC etching. InGaN films are etched in dilute HSO and exposed to a pulsed 445 nm laser with a 100 mW/cm average power density. Two potentials (0.4 V or 0.9 V) measured with respect to an AgCl|Ag reference electrode are applied during PEC etching, resulting in different QDs. Atomic force microscope images show that while the QD density and sizes are similar for both applied potentials, the heights are more uniform and match the initial InGaN thickness at the lower applied potential. Schrodinger-Poisson simulations show that polarization-induced fields in the thin InGaN layer prevent positively charged carriers (holes) from arriving at the c-plane surface. These fields are mitigated in the less polar planes resulting in high etch selectivity for the different planes. The higher applied potential overcomes the polarization fields and breaks the anisotropic etching.
传统的氮化铟镓量子点(QD)合成方法,如斯特兰斯基-克拉斯塔诺夫生长法,常常导致量子点集合体密度低且尺寸分布不均匀。为了克服这些挑战,利用相干光通过光电化学(PEC)蚀刻来形成量子点的方法已被开发出来。本文展示了利用PEC蚀刻对氮化铟镓薄膜进行各向异性蚀刻。氮化铟镓薄膜在稀硫酸中蚀刻,并暴露于平均功率密度为100 mW/cm²的脉冲445 nm激光下。在PEC蚀刻过程中,相对于氯化银|银参比电极施加两个电位(0.4 V或0.9 V),从而得到不同的量子点。原子力显微镜图像显示,虽然两种施加电位下量子点的密度和尺寸相似,但在较低的施加电位下,量子点的高度更均匀,且与初始氮化铟镓厚度相符。薛定谔-泊松模拟表明,氮化铟镓薄层中的极化诱导场会阻止带正电的载流子(空穴)到达c面表面。在极性较小的平面中,这些场会减弱,从而导致不同平面具有较高的蚀刻选择性。较高的施加电位克服了极化场并打破了各向异性蚀刻。