Lesz Sabina, Karolus Małgorzata, Gabryś Adrian, Hrapkowicz Bartłomiej, Walke Witold, Pakieła Wojciech, Gołombek Klaudiusz, Popis Julia, Palček Peter
Department of Engineering Materials and Biomaterials, Silesian University of Technology, 18a Konarskiego Street, 44-100 Gliwice, Poland.
Institute of Materials Engineering, University of Silesia, 1a 75 Pulku Piechoty Street, 41-500 Chorzow, Poland.
Materials (Basel). 2023 Feb 25;16(5):1915. doi: 10.3390/ma16051915.
The magnesium-based alloys produced by mechanical alloying (MA) are characterized by specific porosity, fine-grained structure, and isotropic properties. In addition, alloys containing magnesium, zinc, calcium, and the noble element gold are biocompatible, so they can be used for biomedical implants. The paper assesses selected mechanical properties and the structure of the MgZnCaAu as a potential biodegradable biomaterial. The alloy was produced by mechanical synthesis with a milling time of 13 h, and sintered via spark-plasma sintering (SPS) carried out at a temperature of 350 °C and a compaction pressure of 50 MPa, with a holding time of 4 min and a heating rate of 50 °C∙min to 300 °C and 25 °C∙min from 300 to 350 °C. The article presents the results of the X-ray diffraction (XRD) method, density, scanning electron microscopy (SEM), particle size distributions, and Vickers microhardness and electrochemical properties via electrochemical impedance spectroscopy (EIS) and potentiodynamic immersion testing. The obtained results reveal the compressive strength of 216 MPa and Young's modulus of 2530 MPa. The structure comprises MgZn and MgAu phases formed during the mechanical synthesis, and MgZn that has been formed during the sintering process. Although MgZn and MgZn improve the corrosion resistance of the Mg-based alloys, it has been revealed that the double layer formed because of contact with the Ringer's solution is not an effective barrier; hence, more data and optimization are necessary.
通过机械合金化(MA)制备的镁基合金具有特定的孔隙率、细晶结构和各向同性性能。此外,含有镁、锌、钙和贵金属元素金的合金具有生物相容性,因此可用于生物医学植入物。本文评估了MgZnCaAu作为潜在可生物降解生物材料的选定力学性能和结构。该合金通过机械合成制备,球磨时间为13小时,并通过放电等离子烧结(SPS)进行烧结,烧结温度为350℃,压实压力为50MPa,保温时间为4分钟,加热速率为50℃/分钟至300℃,从300℃至350℃为25℃/分钟。文章介绍了X射线衍射(XRD)方法、密度、扫描电子显微镜(SEM)、粒度分布以及通过电化学阻抗谱(EIS)和动电位浸泡测试得到的维氏显微硬度和电化学性能的结果。所得结果显示抗压强度为216MPa,杨氏模量为2530MPa。该结构包括机械合成过程中形成的MgZn和MgAu相,以及烧结过程中形成的MgZn。尽管MgZn和MgZn提高了镁基合金的耐腐蚀性,但已发现与林格氏溶液接触形成的双层不是有效的屏障;因此,需要更多数据和优化。