Schlicht Samuel, Drummer Dietmar
Institute of Polymer Technology, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany.
Collaborative Research Center 814, Friedrich-Alexander-Universität Erlangen-Nürnberg, Am Weichselgarten 10, 91058 Erlangen, Germany.
Materials (Basel). 2023 Mar 1;16(5):2050. doi: 10.3390/ma16052050.
Laser-based powder bed fusion (LPBF) of polymers allows for the additive manufacturing of dense components with high mechanical properties. Due to inherent limitations of present material systems suitable for LPBF of polymers and required high processing temperatures, the present paper investigates the in situ modification of material systems using powder blending of p-aminobenzoic acid and aliphatic polyamide 12, followed by subsequent laser-based additive manufacturing. Prepared powder blends exhibit a considerable reduction of required processing temperatures dependent on the fraction of p-aminobenzoic acid, allowing for the processing of polyamide 12 at a build chamber temperature of 141.5 °C. An elevated fraction of 20 wt% of p-aminobenzoic acid allows for obtaining a considerably increased elongation at break of 24.65% ± 2.87 while exhibiting a reduced ultimate tensile strength. Thermal investigations demonstrate the influence of the thermal material history on thermal properties, associated with the suppression of low-melting crystalline fractions, yielding amorphous material properties of the previously semi-crystalline polymer. Based on complementary infrared spectroscopic analysis, the increased presence of secondary amides can be observed, indicating the influence of both covalently bound aromatic groups and hydrogen-bound supramolecular structures on emerging material properties. The presented approach represents a novel methodology for the energy-efficient in situ preparation of eutectic polyamides, potentially allowing for the manufacturing of tailored material systems with adapted thermal, chemical, and mechanical properties.
基于激光的聚合物粉末床熔融(LPBF)技术能够增材制造出具有高机械性能的致密部件。由于目前适用于聚合物LPBF的材料体系存在固有局限性以及所需的高加工温度,本文研究了通过对氨基苯甲酸与脂肪族聚酰胺12进行粉末共混对材料体系进行原位改性,随后进行基于激光的增材制造。制备的粉末共混物显示出所需加工温度的显著降低,这取决于对氨基苯甲酸的比例,使得聚酰胺12能够在141.5°C的成型腔温度下进行加工。对氨基苯甲酸含量为20 wt%时,可使断裂伸长率显著提高至24.65%±2.87%,同时极限拉伸强度降低。热分析表明热材料历史对热性能的影响,这与低熔点结晶部分的抑制有关,使先前半结晶聚合物呈现出非晶态材料性能。基于互补的红外光谱分析,可以观察到仲酰胺的存在增加,这表明共价键合的芳族基团和氢键超分子结构对新出现的材料性能都有影响。所提出的方法代表了一种用于共混聚酰胺节能原位制备的新方法,有可能制造出具有适配热、化学和机械性能的定制材料体系。