Suppr超能文献

基于人工神经网络的位错结构形成速率反应方程参数的归纳确定

Inductive Determination of Rate-Reaction Equation Parameters for Dislocation Structure Formation Using Artificial Neural Network.

作者信息

Umeno Yoshitaka, Kawai Emi, Kubo Atsushi, Shima Hiroyuki, Sumigawa Takashi

机构信息

Institute of Industrial Science, The University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505, Japan.

Department of Environmental Sciences, University of Yamanashi, 4-4-37, Takeda, Kofu, Yamanashi 400-8510, Japan.

出版信息

Materials (Basel). 2023 Mar 5;16(5):2108. doi: 10.3390/ma16052108.

Abstract

The reaction-diffusion equation approach, which solves differential equations of the development of density distributions of mobile and immobile dislocations under mutual interactions, is a method widely used to model the dislocation structure formation. A challenge in the approach is the difficulty in the determination of appropriate parameters in the governing equations because deductive (bottom-up) determination for such a phenomenological model is problematic. To circumvent this problem, we propose an inductive approach utilizing the machine-learning method to search a parameter set that produces simulation results consistent with experiments. Using a thin film model, we performed numerical simulations based on the reaction-diffusion equations for various sets of input parameters to obtain dislocation patterns. The resulting patterns are represented by the following two parameters; the number of dislocation walls (p2), and the average width of the walls (p3). Then, we constructed an artificial neural network (ANN) model to map between the input parameters and the output dislocation patterns. The constructed ANN model was found to be able to predict dislocation patterns; i.e., average errors in p2 and p3 for test data having 10% deviation from the training data were within 7% of the average magnitude of p2 and p3. The proposed scheme enables us to find appropriate constitutive laws that lead to reasonable simulation results, once realistic observations of the phenomenon in question are provided. This approach provides a new scheme to bridge models for different length scales in the hierarchical multiscale simulation framework.

摘要

反应扩散方程方法通过求解可动位错和不可动位错在相互作用下密度分布发展的微分方程,是一种广泛用于模拟位错结构形成的方法。该方法面临的一个挑战是在控制方程中确定合适参数存在困难,因为对于这种唯象模型进行演绎(自下而上)确定存在问题。为解决这个问题,我们提出一种归纳方法,利用机器学习方法搜索能产生与实验一致的模拟结果的参数集。使用薄膜模型,我们基于反应扩散方程对各种输入参数集进行了数值模拟以获得位错图案。得到的图案由以下两个参数表示:位错壁的数量(p2)和壁的平均宽度(p3)。然后,我们构建了一个人工神经网络(ANN)模型来映射输入参数和输出位错图案之间的关系。发现所构建的ANN模型能够预测位错图案;即,对于与训练数据有10%偏差的测试数据,p2和p3的平均误差在p2和p3平均大小的7%以内。一旦提供了对相关现象的实际观测结果,所提出的方案使我们能够找到能产生合理模拟结果的合适本构定律。这种方法为在分层多尺度模拟框架中连接不同长度尺度的模型提供了一种新方案。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9101/10004333/654be6a3edaf/materials-16-02108-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验