Suppr超能文献

纤维-基体界面摩擦对高模量碳纤维复合材料抗压强度的影响。

Effect of Fiber-Matrix Interface Friction on Compressive Strength of High-Modulus Carbon Composites.

机构信息

Department of Mechanical and Aerospace Engineering, University of Texas Arlington, Arlington, TX 76019, USA.

出版信息

Molecules. 2023 Feb 22;28(5):2049. doi: 10.3390/molecules28052049.

Abstract

Carbon-fiber-reinforced polymers (CFRPs) enable lightweight, strong, and durable structures for many engineering applications including aerospace, automotive, biomedical, and others. High-modulus (HM) CFRPs enable the most significant improvement in mechanical stiffness at a lower weight, allowing for extremely lightweight aircraft structures. However, low fiber-direction compressive strength has been a major weakness of HM CFRPs, prohibiting their implementation in the primary structures. Microstructural tailoring may provide an innovative means for breaking through the fiber-direction compressive strength barrier. This has been implemented by hybridizing intermediate-modulus (IM) and HM carbon fibers in HM CFRP toughened with nanosilica particles. The new material solution almost doubles the compressive strength of the HM CFRPs, achieving that of the advanced IM CFRPs currently used in airframes and rotor components, but with a much higher axial modulus. The major focus of this work has been understanding the fiber-matrix interface properties governing the fiber-direction compressive strength improvement of the hybrid HM CFRPs. In particular, differences in the surface topology may cause much higher interface friction for IM carbon fibers compared to the HM fibers, which is responsible for the interface strength improvement. In situ Scanning Electron Microscopy (SEM)-based experiments were developed to measure interface friction. Such experiments reveal an approximately 48% higher maximum shear traction due to interface friction for IM carbon fibers compared to the HM fibers.

摘要

碳纤维增强聚合物(CFRP)为许多工程应用提供了轻质、高强和耐用的结构,包括航空航天、汽车、生物医学等。高模量(HM)CFRP 可在更轻的重量下实现机械刚度的最大提高,从而实现极其轻质的飞机结构。然而,HM CFRP 的低纤维方向抗压强度一直是其主要弱点,限制了它们在主要结构中的应用。微观结构设计可能为突破纤维方向抗压强度障碍提供一种创新手段。通过在纳米二氧化硅颗粒增韧的 HM CFRP 中混合中间模量(IM)和 HM 碳纤维来实现这一点。这种新材料解决方案几乎将 HM CFRP 的抗压强度提高了一倍,达到了目前用于机身和转子部件的先进 IM CFRP 的水平,但轴向模量要高得多。这项工作的主要重点是了解控制混合 HM CFRP 纤维方向抗压强度提高的纤维-基体界面特性。特别是,表面拓扑的差异可能导致 IM 碳纤维的界面摩擦比 HM 纤维高得多,这是界面强度提高的原因。开发了基于原位扫描电子显微镜(SEM)的实验来测量界面摩擦。这种实验表明,由于界面摩擦,IM 碳纤维的最大剪切牵引力比 HM 纤维高约 48%。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dbe4/10003893/a6c5f2e8ebdb/molecules-28-02049-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验