Han Ping, Yang Lina, Zhang Susu, Gu Zheng
College of Physics, Qingdao University, Qingdao 266071, China.
Weihai Innovation Institute, Qingdao University, Weihai 264200, China.
Nanomaterials (Basel). 2022 Aug 13;12(16):2778. doi: 10.3390/nano12162778.
The interface quality is crucial for the properties of carbon fiber-reinforced polymer- matrix composites (CFRPs). In order to improve the interfacial and mechanical properties of CFRPs, a superior gradient modulus interfacial microstructure is constructed on the carbon fiber (CF) surface by chemically grafting a self-assembly carboxyl-terminated hyperbranched polymer (HP-COOH). A monofilament debonding test, a short beam shear test, an impact test and a dynamic mechanical thermal analysis (DMTA) were conducted to investigate the properties of the modified composite. Prominent improvements of 79.6% for the interfacial shear strength, 51.5% for the interlaminar shear strength, and 49.2% for the impact strength, as well as superior heat-resistance properties are achieved for composites with the gradient modulus interface over those of the untreated CF composites. The mechanism for performance improvement is mainly attributed to the enhanced CF surface energy, mechanical interlocking, and chemical bonding interactions. In particular, an atomic force microscopy (AFM) test proved that the gradient modulus interfacial microstructure formed by HP-COOH could widen the interface layer thickness and buffer the sharp variations in the modulus from CF to resin, thereby transmitting an external force and reducing the stress concentration. This work provides a facile and efficient strategy for constructing a superior and versatile interface for high- performance composites.
界面质量对于碳纤维增强聚合物基复合材料(CFRP)的性能至关重要。为了提高CFRP的界面和力学性能,通过化学接枝自组装羧基封端超支化聚合物(HP-COOH)在碳纤维(CF)表面构建了一种优异的梯度模量界面微观结构。进行了单丝脱粘试验、短梁剪切试验、冲击试验和动态力学热分析(DMTA)以研究改性复合材料的性能。与未处理的CF复合材料相比,具有梯度模量界面的复合材料的界面剪切强度提高了79.6%,层间剪切强度提高了51.5%,冲击强度提高了49.2%,并且具有优异的耐热性能。性能改善的机制主要归因于CF表面能的增强、机械互锁和化学键合相互作用。特别是,原子力显微镜(AFM)测试证明,由HP-COOH形成的梯度模量界面微观结构可以拓宽界面层厚度并缓冲从CF到树脂的模量的急剧变化,从而传递外力并降低应力集中。这项工作为构建高性能复合材料的优异通用界面提供了一种简便有效的策略。