Shin Jihyun, Yoo Hocheon
Department of Electronic Engineering, Gachon University, Seongnam 13120, Republic of Korea.
Nanomaterials (Basel). 2023 Feb 26;13(5):882. doi: 10.3390/nano13050882.
Rather than generating a photocurrent through photo-excited carriers by the photoelectric effect, the photogating effect enables us to detect sub-bandgap rays. The photogating effect is caused by trapped photo-induced charges that modulate the potential energy of the semiconductor/dielectric interface, where these trapped charges contribute an additional electrical gating-field, resulting in a shift in the threshold voltage. This approach clearly separates the drain current in dark versus bright exposures. In this review, we discuss the photogating effect-driven photodetectors with respect to emerging optoelectrical materials, device structures, and mechanisms. Representative examples that reported the photogating effect-based sub-bandgap photodetection are revisited. Furthermore, emerging applications using these photogating effects are highlighted. The potential and challenging aspects of next-generation photodetector devices are presented with an emphasis on the photogating effect.
光闸效应并非通过光电效应利用光激发载流子产生光电流,而是使我们能够检测亚带隙射线。光闸效应是由捕获的光致电荷引起的,这些电荷调制半导体/电介质界面的势能,其中这些捕获的电荷贡献了额外的电闸场,导致阈值电压发生偏移。这种方法清楚地将暗曝光和亮曝光下的漏极电流区分开来。在这篇综述中,我们讨论了基于光闸效应的光电探测器,涉及新兴的光电材料、器件结构和机制。重新审视了报道基于光闸效应的亚带隙光探测的代表性实例。此外,还强调了使用这些光闸效应的新兴应用。重点介绍了下一代光探测器器件基于光闸效应的潜在和具有挑战性的方面。