Suppr超能文献

扩散界面层控制具有超高光敏性的双层近红外聚合物光电晶体管的受体相。

Diffusion interface layer controlling the acceptor phase of bilayer near-infrared polymer phototransistors with ultrahigh photosensitivity.

作者信息

Han Tao, Wang Zejiang, Shen Ning, Zhou Zewen, Hou Xuehua, Ding Shufang, Jiang Chunzhi, Huang Xiaoyi, Zhang Xiaofeng, Liu Linlin

机构信息

Hunan Provincial Key Laboratory of Xiangnan Rare-Precious Metals Compounds Research and Application, School of Physics and Electronic Electrical Engineering, Xiangnan University, Chenzhou, 423000, People's Republic of China.

Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, People's Republic of China.

出版信息

Nat Commun. 2022 Mar 11;13(1):1332. doi: 10.1038/s41467-022-28922-4.

Abstract

The narrow bandgap of near-infrared (NIR) polymers is a major barrier to improving the performance of NIR phototransistors. The existing technique for overcoming this barrier is to construct a bilayer device (channel layer/bulk heterojunction (BHJ) layer). However, acceptor phases of the BHJ dissolve into the channel layer and are randomly distributed by the spin-coating method, resulting in turn-on voltages (V) and off-state dark currents remaining at a high level. In this work, a diffusion interface layer is formed between the channel layer and BHJ layer after treating the film transfer method (FTM)-based NIR phototransistors with solvent vapor annealing (SVA). The newly formed diffusion interface layer makes it possible to control the acceptor phase distribution. The performance of the FTM-based device improves after SVA. V decreases from 26 V to zero, and the dark currents decrease by one order of magnitude. The photosensitivity (I/I) increases from 22 to 1.7 × 10.

摘要

近红外(NIR)聚合物的窄带隙是提高近红外光电晶体管性能的主要障碍。克服这一障碍的现有技术是构建双层器件(沟道层/本体异质结(BHJ)层)。然而,BHJ的受体相溶解到沟道层中,并通过旋涂法随机分布,导致开启电压(V)和关态暗电流保持在较高水平。在这项工作中,在用溶剂蒸汽退火(SVA)处理基于薄膜转移法(FTM)的近红外光电晶体管后,在沟道层和BHJ层之间形成了扩散界面层。新形成的扩散界面层使得控制受体相分布成为可能。基于FTM的器件在SVA后性能得到改善。V从26 V降至零,暗电流降低一个数量级。光敏度(I/I)从22提高到1.7×10。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7839/8917130/9caf5d3e81d8/41467_2022_28922_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验