Suppr超能文献

基于时间表达谱构建辣椒(L.)基因功能网络:一种建设性方法

Gene Functional Networks from Time Expression Profiles: A Constructive Approach Demonstrated in Chili Pepper ( L.).

作者信息

Flores-Díaz Alan, Escoto-Sandoval Christian, Cervantes-Hernández Felipe, Ordaz-Ortiz José J, Hayano-Kanashiro Corina, Reyes-Valdés Humberto, Garcés-Claver Ana, Ochoa-Alejo Neftalí, Martínez Octavio

机构信息

Unidad de Genómica Avanzada (Langebio), Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (Cinvestav), Irapuato 36824, Mexico.

Departamento de Investigaciones Científicas y Tecnológicas de la Universidad de Sonora, Hermosillo 83000, Mexico.

出版信息

Plants (Basel). 2023 Mar 3;12(5):1148. doi: 10.3390/plants12051148.

Abstract

Gene co-expression networks are powerful tools to understand functional interactions between genes. However, large co-expression networks are difficult to interpret and do not guarantee that the relations found will be true for different genotypes. Statistically verified time expression profiles give information about significant changes in expressions through time, and genes with highly correlated time expression profiles, which are annotated in the same biological process, are likely to be functionally connected. A method to obtain robust networks of functionally related genes will be useful to understand the complexity of the transcriptome, leading to biologically relevant insights. We present an algorithm to construct gene functional networks for genes annotated in a given biological process or other aspects of interest. We assume that there are genome-wide time expression profiles for a set of representative genotypes of the species of interest. The method is based on the correlation of time expression profiles, bound by a set of thresholds that assure both, a given false discovery rate, and the discard of correlation outliers. The novelty of the method consists in that a gene expression relation must be repeatedly found in a given set of independent genotypes to be considered valid. This automatically discards relations particular to specific genotypes, assuring a network robustness, which can be set a priori. Additionally, we present an algorithm to find transcription factors candidates for regulating hub genes within a network. The algorithms are demonstrated with data from a large experiment studying gene expression during the development of the fruit in a diverse set of chili pepper genotypes. The algorithm is implemented and demonstrated in a new version of the publicly available R package "" (version 1.0).

摘要

基因共表达网络是理解基因间功能相互作用的强大工具。然而,大型共表达网络难以解读,且不能保证所发现的关系对不同基因型都成立。经统计学验证的时间表达谱给出了基因表达随时间显著变化的信息,并且在同一生物学过程中注释的、时间表达谱高度相关的基因可能在功能上相互连接。一种获取功能相关基因稳健网络的方法将有助于理解转录组的复杂性,从而获得生物学上有意义的见解。我们提出了一种算法,用于构建针对在给定生物学过程或其他感兴趣方面注释的基因的基因功能网络。我们假设存在一组感兴趣物种代表性基因型的全基因组时间表达谱。该方法基于时间表达谱的相关性,并受一组阈值的约束,这些阈值既能确保给定的错误发现率,又能剔除相关性异常值。该方法的新颖之处在于,基因表达关系必须在给定的一组独立基因型中反复出现才被视为有效。这自动剔除了特定基因型特有的关系,确保了网络的稳健性,而稳健性可以事先设定。此外,我们还提出了一种算法,用于在网络中寻找调控枢纽基因的转录因子候选物。通过一项大型实验的数据对这些算法进行了验证,该实验研究了多种辣椒基因型果实发育过程中的基因表达。该算法在公开可用的R包“”的新版本(版本1.0)中实现并得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e6c8/10005043/a743ec0d5404/plants-12-01148-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验