Suppr超能文献

静水内压下玻璃纤维增强塑料(GFRP)复合管的数值研究。

Numerical Investigation into GFRP Composite Pipes under Hydrostatic Internal Pressure.

作者信息

Sebeay Tamer Ali, Ahmed Azzam

机构信息

Engineering Management Department, College of Engineering, Prince Sultan University, Riyadh 11586, Saudi Arabia.

Mechanical Design and Production Department, Faculty of Engineering, Zagazig University, Zagazig, Sharkia, Egypt.

出版信息

Polymers (Basel). 2023 Feb 23;15(5):1110. doi: 10.3390/polym15051110.

Abstract

Glass-fiber-reinforced plastic (GFRP) composite pipes are used extensively in high-performance applications, due to their high stiffness and strength, corrosion resistance, and thermal and chemical stability. In piping, composites showed high performance due to their long service life. In this study, glass-fiber-reinforced plastic composite pipes with [±40], [±45], [±50], [±55], [±60], [±65], and [±70] fiber angles and varied pipe wall thicknesses (3.78-5.1 mm) and lengths (110-660 mm) were subjected to constant hydrostatic internal pressure to obtain the pressure resistance capacity of the glass-fiber-reinforced plastic composite pipe, hoop and axial stress, longitudinal and transverse stress, total deformation, and failure modes. For model validation, the simulation of internal pressure on a composite pipe installed on the seabed was investigated and compared with previously published data. Damage analysis based on progressive damage in the finite element model was built based on Hashin damage for the composite. Shell elements were used for internal hydrostatic pressure, due to their convenience for pressure type and property predictions. The finite element results observed that the winding angles from [±40] to [±55] and pipe thickness play a vital role in improving the pressure capacity of the composite pipe. The average total deformation of all designed composite pipes was 0.37 mm. The highest pressure capacity was observed at [±55°] due to the diameter-to-thickness ratio effect.

摘要

玻璃纤维增强塑料(GFRP)复合管因其高刚度、高强度、耐腐蚀以及热稳定性和化学稳定性,而广泛应用于高性能领域。在管道工程中,复合材料因其使用寿命长而表现出高性能。在本研究中,对纤维角度为[±40]、[±45]、[±50]、[±55]、[±60]、[±65]和[±70],管壁厚度在3.78 - 5.1毫米之间变化且长度在110 - 660毫米之间的玻璃纤维增强塑料复合管,施加恒定的静水内压,以获取玻璃纤维增强塑料复合管的耐压能力、环向应力和轴向应力、纵向和横向应力、总变形以及失效模式。为进行模型验证,研究了安装在海床上的复合管内部压力模拟情况,并与先前发表的数据进行了比较。基于复合材料的Hashin损伤,在有限元模型中建立了基于渐进损伤的损伤分析。由于壳单元在压力类型和特性预测方面的便利性,所以采用壳单元来模拟内部静水压力。有限元结果表明,[±40]到[±55]的缠绕角度和管道厚度对提高复合管的压力承载能力起着至关重要的作用。所有设计的复合管的平均总变形为0.37毫米。由于径厚比效应,在[±55°]时观察到最高的压力承载能力。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/940f/10006867/32655f3ccd00/polymers-15-01110-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验